About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 428593, 9 pages
http://dx.doi.org/10.1155/2010/428593
Review Article

Immunity against Helminths: Interactions with the Host and the Intercurrent Infections

UMR ENVN/INRA 1300 Bioagression, Épidémiologie et Analyse de Risques, Atlanpole-La Chantrerie, Route de Gachet, BP40706, 44307 Nantes, France

Received 28 July 2009; Accepted 25 November 2009

Academic Editor: Luis I. Terrazas

Copyright © 2010 Emmanuelle Moreau and Alain Chauvin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Gaba, V. Ginot, and J. Cabaret, “Modelling macroparasite aggregation using a nematode-sheep system: the Weibull distribution as an alternative to the negative binomial distribution?” Parasitology, vol. 131, no. 3, pp. 393–401, 2005. View at Publisher · View at Google Scholar
  2. A. Hall, S. Horton, and N. de Silva, “The costs and cost-effectiveness of mass treatment for intestinal nematode worm infections using different treatment thresholds,” PLoS Neglected Tropical Diseases, vol. 3, no. 3, article e402, 2009. View at Publisher · View at Google Scholar · View at PubMed
  3. R. M. Maizels, A. Balic, N. Gomez-Escobar, M. Nair, M. D. Taylor, and J. E. Allen, “Helminth parasites—masters of regulation,” Immunological Reviews, vol. 201, pp. 89–116, 2004. View at Publisher · View at Google Scholar · View at PubMed
  4. R. M. Anthony, L. I. Rutitzky, J. F. Urban Jr., M. J. Stadecker, and W. C. Gause, “Protective immune mechanisms in helminth infection,” Nature Reviews Immunology, vol. 7, no. 12, pp. 975–987, 2007. View at Publisher · View at Google Scholar · View at PubMed
  5. M. Capron and A. Capron, “Effector functions of eosinophils in schistosomiasis,” Memorias do Instituto Oswaldo Cruz, vol. 87, no. 4, pp. 167–170, 1992.
  6. E. N. T. Meeusen, A. Balic, and V. Bowles, “Cells, cytokines and other molecules associated with rejection of gastrointestinal nematode parasites,” Veterinary Immunology and Immunopathology, vol. 108, no. 1-2, pp. 121–125, 2005. View at Publisher · View at Google Scholar · View at PubMed
  7. D. Piedrafita, J. C. Parsons, R. M. Sandeman, et al., “Antibody-dependent cell-mediated cytotoxicity to newly excysted juvenile Fasciola hepatica in vitro is mediated by reactive nitrogen intermediates,” Parasite Immunology, vol. 23, no. 9, pp. 473–482, 2001. View at Publisher · View at Google Scholar
  8. P. F. Weller, “Eosinophils: structure and functions,” Current Opinion in Immunology, vol. 6, no. 1, pp. 85–90, 1994. View at Publisher · View at Google Scholar
  9. A. S. MacDonald, M. I. Araujo, and E. J. Pearce, “Immunology of parasitic helminth infections,” Infection and Immunity, vol. 70, no. 2, pp. 427–433, 2002. View at Publisher · View at Google Scholar
  10. L. Cervi, G. Rossi, H. Cejas, and D. T. Masih, “Fasciola hepatica-induced immune suppression of spleen mononuclear cell proliferation: role of nitric oxide,” Clinical Immunology and Immunopathology, vol. 87, no. 2, pp. 145–154, 1998. View at Publisher · View at Google Scholar
  11. R. T. Gazzinelli, I. P. Oswald, S. L. James, and A. Sher, “IL-10 inhibits parasite killing and nitrogen oxide production by IFN-γ- activated macrophages,” Journal of Immunology, vol. 148, no. 6, pp. 1792–1796, 1992.
  12. P. Sibille, O. Tliba, and C. Boulard, “Early and transient cytotoxic response of peritoneal cells from Fasciola hepatica-infected rats,” Veterinary Research, vol. 35, no. 5, pp. 573–584, 2004. View at Publisher · View at Google Scholar · View at PubMed
  13. G. Ganga, J. P. Varshney, and R. C. Patra, “Activity of antioxidant enzymes in excretory-secretory fluid and somatic extracts of Fasciola gigantica,” Journal of Veterinary Parasitology, vol. 21, no. 1, pp. 51–52, 2007.
  14. D. Piedrafita, E. Estuningsih, J. Pleasance, et al., “Peritoneal lavage cells of Indonesian thin-tail sheep mediate antibody-dependent superoxide radical cytotoxicity in vitro against newly excysted juvenile Fasciola gigantica but not juvenile Fasciola hepatica,” Infection and Immunity, vol. 75, no. 4, pp. 1954–1963, 2007. View at Publisher · View at Google Scholar · View at PubMed
  15. A. M. Smith, A. J. Dowd, M. Heffernan, C. D. Robertson, and J. P. Dalton, “Fasciola hepatica: a secreted cathepsin L-like proteinase cleaves host immunoglobulin,” International Journal for Parasitology, vol. 23, no. 8, pp. 977–983, 1993. View at Publisher · View at Google Scholar
  16. A. Chauvin and C. Boulard, “Local immune response to experimental Fasciola hepatica infection in sheep,” Parasite, vol. 3, no. 3, pp. 209–215, 1996.
  17. D. S. Hansen, D. G. Clery, S. E. Estuningsih, S. Widjajanti, S. Partoutomo, and T. W. Spithill, “Immune responses in Indonesian thin tail and Merino sheep during a primary infection with Fasciola gigantica: lack of a specific IgG2 antibody response is associated with increased resistance to infection in Indonesian sheep,” International Journal for Parasitology, vol. 29, no. 7, pp. 1027–1035, 1999. View at Publisher · View at Google Scholar
  18. L. Cervi, G. Rossi, and D. T. Masih, “Potential role for excretory-secretory forms of glutathione-S-transferase (GST) in Fasciola hepatica,” Parasitology, vol. 119, no. 6, pp. 627–633, 1999. View at Publisher · View at Google Scholar
  19. E. Moreau, S. Hervé, Z. W. Yu, and C. Alain, “Modulation of sheep lymphocyte responses by Fasciola hepatica excretory-secretory products,” Veterinary Parasitology, vol. 108, no. 3, pp. 207–215, 2002. View at Publisher · View at Google Scholar
  20. M. C. Serradell, L. Guasconi, L. Cervi, L. S. Chiapello, and D. T. Masih, “Excretory-secretory products from Fasciola hepatica induce eosinophil apoptosis by a caspase-dependent mechanism,” Veterinary Immunology and Immunopathology, vol. 117, no. 3-4, pp. 197–208, 2007. View at Publisher · View at Google Scholar · View at PubMed
  21. E. A. Milbourne and M. J. Howell, “Eosinophil responses to Fasciola hepatica in rodents,” International Journal for Parasitology, vol. 20, no. 5, pp. 705–708, 1990. View at Publisher · View at Google Scholar
  22. E. A. Milbourne and M. J. Howell, “Eosinophil differentiation in response to Fasciola hepatica and its excretory/secretory antigens,” International Journal for Parasitology, vol. 23, no. 8, pp. 1005–1009, 1993. View at Publisher · View at Google Scholar
  23. R. K. Prowse, P. Chaplin, H. C. Robinson, and T. W. Spithill, “Fasciola hepatica cathepsin L suppresses sheep lymphocyte proliferationin vitro and modulates surface CD4 expression on human and ovine T cells,” Parasite Immunology, vol. 24, no. 2, pp. 57–66, 2002. View at Publisher · View at Google Scholar
  24. M. J. G. Farthing, “Immune response-mediated pathology in human intestinal parasitic infection,” Parasite Immunology, vol. 25, no. 5, pp. 247–257, 2003. View at Publisher · View at Google Scholar
  25. A. Balic, V. M. Bowles, and E. N. T. Meeusen, “Mechanisms of immunity to Haemonchus contortus infection in sheep,” Parasite Immunology, vol. 24, no. 1, pp. 39–46, 2002. View at Publisher · View at Google Scholar
  26. H. S. Gill, G. D. Gray, D. L. Watson, and A. J. Husband, “Isotype-specific antibody responses to Haemonchus contortus in genetically resistant sheep,” Parasite Immunology, vol. 15, no. 2, pp. 61–67, 1993.
  27. G. Smith, “The population biology of the parasitic stages of Haemonchus contortus,” Parasitology, vol. 96, no. 1, pp. 185–195, 1988.
  28. F. J. Culley, A. Brown, D. M. Conroy, I. Sabroe, D. I. Pritchard, and T. J. Williams, “Eotaxin is specifically cleaved by hookworm metalloproteases preventing its action in vitro and in vivo,” Journal of Immunology, vol. 165, no. 11, pp. 6447–6453, 2000.
  29. S. Liddell and D. P. Knox, “Extracellular and cytoplasmic Cu/Zn superoxide dismutases from Haemonchus contortus,” Parasitology, vol. 116, no. 4, pp. 383–394, 1998. View at Publisher · View at Google Scholar
  30. G. F. J. Newlands, P. J. Skuce, D. P. Knox, and W. D. Smith, “Cloning and expression of cystatin, a potent cysteine protease inhibitor from the gut of Haemonchus contortus,” Parasitology, vol. 122, no. 3, pp. 371–378, 2001. View at Publisher · View at Google Scholar
  31. T. Dainichi, Y. Maekawa, K. Ishii, et al., “Nippocystatin, a cysteine protease inhibitor from Nippostrongylus brasiliensis, inhibits antigen processing and modulates antigen-specific immune response,” Infection and Immunity, vol. 69, no. 12, pp. 7380–7386, 2001. View at Publisher · View at Google Scholar · View at PubMed
  32. K. J. Else, “Have gastrointestinal nematodes outwitted the immune system?” Parasite Immunology, vol. 27, no. 10-11, pp. 407–415, 2005. View at Publisher · View at Google Scholar · View at PubMed
  33. P. G. Thomas, M. R. Carter, O. Atochina, et al., “Maturation of dendritic cell 2 phenotype by a helminth glycan uses a Toll-like receptor 4-dependent mechanism,” Journal of Immunology, vol. 171, no. 11, pp. 5837–5841, 2003.
  34. T. Kreider, R. M. Anthony, J. F. Urban Jr., and W. C. Gause, “Alternatively activated macrophages in helminth infections,” Current Opinion in Immunology, vol. 19, no. 4, pp. 448–453, 2007. View at Publisher · View at Google Scholar · View at PubMed
  35. J. A. Jackson, I. M. Friberg, S. Little, and J. E. Bradley, “Review series on helminths, immune modulation and the hygiene hypothesis: immunity against helminths and immunological phenomena in modern human populations: coevolutionary legacies?” Immunology, vol. 126, no. 1, pp. 18–27, 2009. View at Publisher · View at Google Scholar · View at PubMed
  36. D. A. Harn, J. McDonald, O. Atochina, and A. A. Da'dara, “Modulation of host immune responses by helminth glycans,” Immunological Reviews, vol. 230, no. 1, pp. 247–257, 2009. View at Publisher · View at Google Scholar · View at PubMed
  37. J. P. Hewitson, J. R. Grainger, and R. M. Maizels, “Helminth immunoregulation: the role of parasite secreted proteins in modulating host immunity,” Molecular and Biochemical Parasitology, vol. 167, no. 1, pp. 1–11, 2009. View at Publisher · View at Google Scholar · View at PubMed
  38. J.-M. Grzych, E. Pearce, A. Cheever, et al., “Egg deposition is the major stimulus for the production of Th2 cytokines in murine Schistomiasis mansoni,” Journal of Immunology, vol. 146, no. 4, pp. 1322–1327, 1991.
  39. G. Schramm, F. H. Falcone, A. Gronow, et al., “Molecular characterization of an interleukin-4-inducing factor from Schistosoma mansoni eggs,” Journal of Biological Chemistry, vol. 278, no. 20, pp. 18384–18392, 2003. View at Publisher · View at Google Scholar · View at PubMed
  40. B. Everts, G. Perona-Wright, H. H. Smits, et al., “Omega-1, a glycoprotein secreted by Schistosoma mansoni eggs, drives Th2 responses,” Journal of Experimental Medicine, vol. 206, no. 8, pp. 1673–1680, 2009. View at Publisher · View at Google Scholar · View at PubMed
  41. E. H. Wilson, E. Katz, H. S. Goodridge, M. M. Harnett, and W. Harnett, “In vivo activation of murine peritoneal B1 cells by the filarial nematode phosphorylcholine-containing glycoprotein ES-62,” Parasite Immunology, vol. 25, no. 8-9, pp. 463–466, 2003. View at Publisher · View at Google Scholar
  42. F. A. Marshall, A. M. Grierson, P. Garside, W. Harnett, and M. M. Harnett, “ES-62, an immunomodulator secreted by filarial nematodes, suppresses clonal expansion and modifies effector function of heterologous antigen-specific T cells in vivo,” Journal of Immunology, vol. 175, no. 9, pp. 5817–5826, 2005.
  43. H. S. Goodridge, W. Harnett, F. Y. Liew, and M. M. Harnett, “Differential regulation of interleukin-12 p40 and p35 induction via Erk mitogen-activated protein kinase-dependent and -independent mechanisms and the implications for bioactive IL-12 and IL-23 responses,” Immunology, vol. 109, no. 3, pp. 415–425, 2003. View at Publisher · View at Google Scholar
  44. M. Whelan, M. M. Harnett, K. M. Houston, V. Patel, W. Harnett, and K. P. Rigley, “A filarial nematode-secreted product signals dendritic cells to acquire a phenotype that drives development of Th2 cells,” Journal of Immunology, vol. 164, no. 12, pp. 6453–6460, 2000.
  45. L. Prieto-Lafuente, W. F. Gregory, J. E. Allen, and R. M. Maizels, “MIF homologues from a filarial nematode parasite synergize with IL-4 to induce alternative activation of host macrophages,” Journal of Leukocyte Biology, vol. 85, no. 5, pp. 844–854, 2009. View at Publisher · View at Google Scholar · View at PubMed
  46. A. Chauvin, W. Zhang, and E. Moreau, “Fasciolosis of ruminants: immunity, immunomodulation and control strategies,” Bulletin de l'Academie Veterinaire de France, vol. 160, pp. 85–92, 2007.
  47. G. Terefe, C. Lacroux, O. Andreoletti, et al., “Immune response to Haemonchus contortus infection in susceptible (INRA 401) and resistant (Barbados Black Belly) breeds of lambs,” Parasite Immunology, vol. 29, no. 8, pp. 415–424, 2007. View at Publisher · View at Google Scholar · View at PubMed
  48. W. C. Gause, J. F. Urban Jr., and M. J. Stadecker, “The immune response to parasitic helminths: insights from murine models,” Trends in Immunology, vol. 24, no. 5, pp. 269–277, 2003. View at Publisher · View at Google Scholar
  49. W. Y. Zhang, E. Moreau, J. C. Hope, C. J. Howard, W. Y. Huang, and A. Chauvin, “Fasciola hepatica and Fasciola gigantica: comparison of cellular response to experimental infection in sheep,” Experimental Parasitology, vol. 111, no. 3, pp. 154–159, 2005. View at Publisher · View at Google Scholar · View at PubMed
  50. G. Mulcahy and J. P. Dalton, “Cathepsin L proteinases as vaccines against infection with Fasciola hepatica (liver fluke) in ruminants,” Research in Veterinary Science, vol. 70, no. 1, pp. 83–86, 2001. View at Publisher · View at Google Scholar · View at PubMed
  51. M. H. Kaplan, J. R. Whitfield, D. L. Boros, and M. J. Grusby, “Th2 cells are required for the Schistosoma mansoni egg-induced granulomatous response,” Journal of Immunology, vol. 160, no. 4, pp. 1850–1856, 1998.
  52. E. J. Pearce, C. M. Kane, J. Sun, J. J. Taylor, A. S. McKee, and L. Cervi, “Th2 response polarization during infection with die helminth parasite Schistosoma mansoni,” Immunological Reviews, vol. 201, pp. 117–126, 2004. View at Publisher · View at Google Scholar · View at PubMed
  53. M. J. Stadecker, H. Asahi, E. Finger, H. J. Hernandez, L. I. Rutitzky, and J. Sun, “The immunobiology of Th1 polarization in high-pathology schistosomiasis,” Immunological Reviews, vol. 201, pp. 168–179, 2004. View at Publisher · View at Google Scholar · View at PubMed
  54. T. A. Wynn, R. W. Thompson, A. W. Cheever, and M. M. Mentink-Kane, “Immunopathogenesis of schistosomiasis,” Immunological Reviews, vol. 201, pp. 156–167, 2004. View at Publisher · View at Google Scholar · View at PubMed
  55. E. J. Pearce and A. S. MacDonald, “The immunobiology of schistosomiasis,” Nature Reviews Immunology, vol. 2, no. 7, pp. 499–511, 2002.
  56. M. L. Burke, M. K. Jones, G. N. Gobert, Y. S. Li, M. K. Ellis, and D. P. McManus, “Immunopathogenesis of human schistosomiasis,” Parasite Immunology, vol. 31, no. 4, pp. 163–176, 2009. View at Publisher · View at Google Scholar · View at PubMed
  57. J. T. Pesce, T. R. Ramalingam, M. S. Wilson, et al., “Retnla (Relmα/Fizz1) suppresses helminth-induced Th2- type immunity,” PLoS Pathogens, vol. 5, no. 4, Article ID e1000393, 2009. View at Publisher · View at Google Scholar · View at PubMed
  58. G. Mulcahy, S. O'Neill, S. Donnelly, and J. P. Dalton, “Helminths at mucosal barriers—interaction with the immune system,” Advanced Drug Delivery Reviews, vol. 56, no. 6, pp. 853–868, 2004. View at Publisher · View at Google Scholar · View at PubMed
  59. G. Mulcahy, S. O'Neill, J. Fanning, E. McCarthy, and M. Sekiya, “Tissue migration by parasitic helminths—an immunoevasive strategy?” Trends in Parasitology, vol. 21, no. 6, pp. 273–277, 2005. View at Publisher · View at Google Scholar · View at PubMed
  60. R. M. Maizels, “Infections and allergy—helminths, hygiene and host immune regulation,” Current Opinion in Immunology, vol. 17, no. 6, pp. 656–661, 2005. View at Publisher · View at Google Scholar · View at PubMed
  61. R. M. Maizels and M. Yazdanbakhsh, “Immune regulation by helminth parasites: cellular and molecular mechanisms,” Nature Reviews Immunology, vol. 3, no. 9, pp. 733–744, 2003. View at Publisher · View at Google Scholar · View at PubMed
  62. E. Van Riet, F. C. Hartgers, and M. Yazdanbakhsh, “Chronic helminth infections induce immunomodulation: consequences and mechanisms,” Immunobiology, vol. 212, no. 6, pp. 475–490, 2007. View at Publisher · View at Google Scholar · View at PubMed
  63. S. M. O'Neill, K. H. G. Mills, and J. P. Dalton, “Fasciola hepatica cathepsin L cysteine proteinase suppresses Bordetella pertussis-specific interferon-γ production in vivo,” Parasite Immunology, vol. 23, no. 10, pp. 541–547, 2001. View at Publisher · View at Google Scholar
  64. R. J. Flynn, C. Mannion, O. Golden, O. Hacariz, and G. Mulcahy, “Experimental Fasciola hepatica infection alters responses to tests used for diagnosis of bovine tuberculosis,” Infection and Immunity, vol. 75, no. 3, pp. 1373–1381, 2007. View at Publisher · View at Google Scholar · View at PubMed
  65. A. J. Curry, K. J. Else, F. Jones, A. Bancroft, R. K. Grencis, and D. W. Dunne, “Evidence that cytokine-mediated immune interactions induced by Schistosoma mansoni alter disease outcome in mice concurrently infected with Trichuris muris,” Journal of Experimental Medicine, vol. 181, no. 2, pp. 769–774, 1995. View at Publisher · View at Google Scholar
  66. A. J. Marshall, L. R. Brunet, Y. van Gessel, et al., “Toxoplasma gondii and Schistosoma mansoni synergize to promote hepatocyte dysfunction associated with high levels of plasma TNF-α and early death in C57BL/6 mice,” Journal of Immunology, vol. 163, no. 4, pp. 2089–2097, 1999.
  67. S. Specht and A. Hoerauf, “Does helminth elimination promote or prevent malaria?” The Lancet, vol. 369, no. 9560, pp. 446–447, 2007. View at Publisher · View at Google Scholar · View at PubMed
  68. L. E. Bazzone, P. M. Smith, L. I. Rutitzky, et al., “Coinfection with the intestinal nematode Heligmosomoides polygyrus markedly reduces hepatic egg-induced immunopathology and proinflammatory cytokines in mouse models of severe schistosomiasis,” Infection and Immunity, vol. 76, no. 11, pp. 5164–5172, 2008. View at Publisher · View at Google Scholar · View at PubMed
  69. R. C. Furze, T. Hussell, and M. E. Selkirk, “Amelioration of influenza-induced pathology in mice by coinfection with Trichinella spiralis,” Infection and Immunity, vol. 74, no. 3, pp. 1924–1932, 2006. View at Publisher · View at Google Scholar · View at PubMed
  70. M. Weng, D. Huntley, I.-F. Huang, et al., “Alternatively activated macrophages in intestinal helminth infection: effects on concurrent bacterial colitis,” Journal of Immunology, vol. 179, no. 7, pp. 4721–4731, 2007.
  71. C. M. D. Miller, N. C. Smith, R. J. Ikin, N. R. Boulter, J. P. Dalton, and S. Donnelly, “Immunological interactions between 2 common pathogens, Th1-inducing protozoan Toxoplasma gondii and the Th2-inducing helminth Fasciola hepatica,” PLoS ONE, vol. 4, no. 5, article e5692, 2009. View at Publisher · View at Google Scholar · View at PubMed
  72. G. Del Prete, L. Chiumiento, A. Amedei, et al., “Immunosuppression of TH2 responses in Trichinella spiralis infection by Helicobacter pylori neutrophil-activating protein,” Journal of Allergy and Clinical Immunology, vol. 122, no. 5, pp. 908–913, 2008. View at Publisher · View at Google Scholar · View at PubMed
  73. J. F. Urban Jr., N. R. Steenhard, G. I. Solano-Aguilar, et al., “Infection with parasitic nematodes confounds vaccination efficacy,” Veterinary Parasitology, vol. 148, no. 1, pp. 14–20, 2007. View at Publisher · View at Google Scholar · View at PubMed
  74. Z. Su, M. Segura, and M. M. Stevenson, “Reduced protective efficacy of a blood-stage malaria vaccine by concurrent nematode infection,” Infection and Immunity, vol. 74, no. 4, pp. 2138–2144, 2006. View at Publisher · View at Google Scholar · View at PubMed
  75. M. S. Wilson, M. D. Taylor, A. Balic, C. A. M. Finney, J. R. Lamb, and R. M. Maizels, “Suppression of allergic airway inflammation by helminth-induced regulatory T cells,” Journal of Experimental Medicine, vol. 202, no. 9, pp. 1199–1212, 2005. View at Publisher · View at Google Scholar · View at PubMed
  76. K. H. Lee, H. K. Park, H. J. Jeong, et al., “Immunization of proteins from Toxascaris leonina adult worm inhibits allergic specific Th2 response,” Veterinary Parasitology, vol. 156, no. 3-4, pp. 216–225, 2008. View at Publisher · View at Google Scholar · View at PubMed
  77. A. H. J. van den Biggelaar, L. C. Rodrigues, R. Van Ree, et al., “Long-term treatment of intestinal helminths increases mite skin-test reactivity in Gabonese schoolchildren,” Journal of Infectious Diseases, vol. 189, no. 5, pp. 892–900, 2004. View at Publisher · View at Google Scholar · View at PubMed
  78. A. Cooke, P. Tonks, F. M. Jones, et al., “Infection with Schistosoma mansoni prevents insulin dependent diabetes mellitus in non-obese diabetic mice,” Parasite Immunology, vol. 21, no. 4, pp. 169–176, 1999. View at Publisher · View at Google Scholar
  79. D. Sewell, Z. Qing, E. Reinke, et al., “Immunomodulation of experimental autoimmune encephalomyelitis by helminth ova immunization,” International Immunology, vol. 15, no. 1, pp. 59–69, 2003. View at Publisher · View at Google Scholar
  80. R. W. Summers, D. E. Elliott, K. Qadir, J. F. Urban Jr., R. Thompson, and J. V. Weinstock, “Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease,” American Journal of Gastroenterology, vol. 98, no. 9, pp. 2034–2041, 2003. View at Publisher · View at Google Scholar · View at PubMed
  81. R. W. Summers, D. E. Elliot, J. F. Urban Jr., R. Thompson, and J. V. Weinstock, “Trichuris suis therapy in Crohn's disease,” Gut, vol. 54, no. 1, pp. 87–90, 2005. View at Publisher · View at Google Scholar · View at PubMed
  82. W. Harnett, I. B. McInnes, and M. M. Harnett, “ES-62, a filarial nematode-derived immunomodulator with anti-inflammatory potential,” Immunology Letters, vol. 94, no. 1-2, pp. 27–33, 2004. View at Publisher · View at Google Scholar · View at PubMed