About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 473423, 14 pages
http://dx.doi.org/10.1155/2010/473423
Review Article

Comparative Biomechanics of Thick Filaments and Thin Filaments with Functional Consequences for Muscle Contraction

1Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT 05405, USA
2Department of Biology, University of Vermont, Burlington, VT 05405, USA

Received 29 January 2010; Accepted 26 March 2010

Academic Editor: Guy M. Benian

Copyright © 2010 Mark S. Miller et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. E. Huxley, “Fifty years of muscle and the sliding filament hypothesis,” European Journal of Biochemistry, vol. 271, no. 8, pp. 1403–1415, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. D. D. Root, V. K. Yadavalli, J. G. Forbes, and K. Wang, “Coiled-coil nanomechanics and uncoiling and unfolding of the superhelix and α-helices of myosin,” Biophysical Journal, vol. 90, no. 8, pp. 2852–2866, 2006. View at Publisher · View at Google Scholar · View at PubMed
  3. I. Schwaiger, C. Sattler, D. R. Hostetter, and M. Rief, “The myosin coiled-coil is a truly elastic protein structure,” Nature Materials, vol. 1, no. 4, pp. 232–235, 2002. View at Publisher · View at Google Scholar · View at PubMed
  4. D. Dunaway, M. Fauver, and G. Pollack, “Direct measurement of single synthetic vertebrate thick filament elasticity using nanofabricated cantilevers,” Biophysical Journal, vol. 82, no. 6, pp. 3128–3133, 2002.
  5. T. Neumann, M. Fauver, and G. H. Pollack, “Elastic properties of isolated thick filaments measured by nanofabricated cantilevers,” Biophysical Journal, vol. 75, no. 2, pp. 938–947, 1998.
  6. X. Liu and G. H. Pollack, “Mechanics of F-actin characterized with microfabricated cantilevers,” Biophysical Journal, vol. 83, no. 5, pp. 2705–2715, 2002.
  7. L. Kreplak, L. R. Nyland, J. L. Contompasis, and J. O. Vigoreaux, “Nanomechanics of native thick filaments from indirect flight muscles,” Journal of Molecular Biology, vol. 386, no. 5, pp. 1403–1410, 2009. View at Publisher · View at Google Scholar · View at PubMed
  8. L. R. Nyland, B. M. Palmer, Z. Chen, et al., “Cardiac myosin binding protein-C is essential for thick-filament stability and flexural rigidity,” Biophysical Journal, vol. 96, no. 8, pp. 3273–3280, 2009. View at Publisher · View at Google Scholar · View at PubMed
  9. J. L. Contompasis, L. R. Nyland, D. W. Maughan, and J. O. Vigoreaux, “Flightin is necessary for length determination, structural integrity, and large bending stiffness of insect flight muscle thick filaments,” Journal of Molecular Biology, vol. 395, no. 2, pp. 340–348, 2010. View at Publisher · View at Google Scholar · View at PubMed
  10. H. Isambert, P. Venier, A. C. Maggs, et al., “Flexibility of actin filaments derived from thermal fluctuations. Effect of bound nucleotide, phalloidin, and muscle regulatory proteins,” Journal of Biological Chemistry, vol. 270, no. 19, pp. 11437–11444, 1995. View at Publisher · View at Google Scholar
  11. M. J. Greenberg, C.-L. Wang, W. Lehman, and J. R. Moore, “Modulation of actin mechanics by caldesmon and tropomyosin,” Cell Motility and the Cytoskeleton, vol. 65, no. 2, pp. 156–164, 2008. View at Publisher · View at Google Scholar · View at PubMed
  12. F. Gittes, B. Mickey, J. Nettleton, and J. Howard, “Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape,” Journal of Cell Biology, vol. 120, no. 4, pp. 923–934, 1993. View at Publisher · View at Google Scholar
  13. H. Kojima, A. Ishijima, and T. Yanagida, “Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 26, pp. 12962–12966, 1994. View at Publisher · View at Google Scholar
  14. D. E. Dupuis, W. H. Guilford, J. Wu, and D. M. Warshaw, “Actin filament mechanics in the laser trap,” Journal of Muscle Research and Cell Motility, vol. 18, no. 1, pp. 17–30, 1997. View at Publisher · View at Google Scholar
  15. R. Yasuda, H. Miyata, and K. Kinosita Jr., “Direct measurement of the torsional rigidity of single actin filaments,” Journal of Molecular Biology, vol. 263, no. 2, pp. 227–236, 1996. View at Publisher · View at Google Scholar
  16. Y. Tsuda, H. Yasutake, A. Ishuima, and T. Yanaogida, “Torsional rigidity of single actin filaments and actin-actin bond breaking force under torsion measured directly by in vitro micromanipulation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 23, pp. 12937–12942, 1996. View at Publisher · View at Google Scholar
  17. Y. Hao, M. S. Miller, D. M. Swank, et al., “Passive stiffness in Drosophila indirect flight muscle reduced by disrupting paramyosin phosphorylation, but not by embryonic myosin S2 hinge substitution,” Biophysical Journal, vol. 91, no. 12, pp. 4500–4506, 2006. View at Publisher · View at Google Scholar · View at PubMed
  18. M. Kulke, C. Neagoe, B. Kolmerer, et al., “Kettin, a major source of myofibrillar stiffness in Drosophila indirect flight muscle,” Journal of Cell Biology, vol. 154, no. 5, pp. 1045–1057, 2001. View at Publisher · View at Google Scholar · View at PubMed
  19. V. Joumaa, D. E. Rassier, T. R. Leonard, and W. Herzog, “Passive force enhancement in single myofibrils,” Pflugers Archiv European Journal of Physiology, vol. 455, no. 2, pp. 367–371, 2007. View at Publisher · View at Google Scholar · View at PubMed
  20. M. S. Miller, C. M. Dambacher, A. F. Knowles, et al., “Alternative S2 hinge regions of the myosin rod affect myofibrillar structure and myosin kinetics,” Biophysical Journal, vol. 96, no. 10, pp. 4132–4143, 2009. View at Publisher · View at Google Scholar · View at PubMed
  21. H. Liu, M. S. Miller, D. M. Swank, W. A. Kronert, D. W. Maughan, and S. I. Bernstein, “Paramyosin phosphorylation site disruption affects indirect flight muscle stiffness and power generation in Drosophila melanogaster,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 30, pp. 10522–10527, 2005. View at Publisher · View at Google Scholar · View at PubMed
  22. J. A. Henkin, D. W. Maughan, and J. O. Vigoreaux, “Mutations that affect flightin expression in Drosophila alter the viscoelastic properties of flight muscle fibers,” American Journal of Physiology, vol. 286, pp. C65–C72, 2004.
  23. B. M. Palmer, D. Georgakopoulos, P. M. Janssen, et al., “Role of cardiac myosin binding protein C in sustaining left ventricular systolic stiffening,” Circulation Research, vol. 94, no. 9, pp. 1249–1255, 2004. View at Publisher · View at Google Scholar · View at PubMed
  24. Y. Araki, A. Usui, O. Kawaguchi, et al., “Pressure-volume relationship in isolated working heart with crystalloid perfusate in swine and imaging the valve motion,” European Journal of Cardio-Thoracic Surgery, vol. 28, no. 3, pp. 435–442, 2005. View at Publisher · View at Google Scholar · View at PubMed
  25. M. Dickinson, G. Farman, M. Frye, et al., “Molecular dynamics of cyclically contracting insect flight muscle in vivo,” Nature, vol. 433, no. 7023, pp. 330–334, 2005. View at Publisher · View at Google Scholar · View at PubMed
  26. H. Granzier and S. Labeit, “Structure-function relations of the giant elastic protein titin in striated and smooth muscle cells,” Muscle and Nerve, vol. 36, no. 6, pp. 740–755, 2007. View at Publisher · View at Google Scholar · View at PubMed
  27. A. Pirani, M. V. Vinogradova, P. M. Curmi, et al., “An atomic model of the thin filament in the relaxed and Ca2+-activated states,” Journal of Molecular Biology, vol. 357, no. 3, pp. 707–717, 2006. View at Publisher · View at Google Scholar · View at PubMed
  28. M. E. Zoghbi, J. L. Woodhead, R. L. Moss, and R. Craig, “Three-dimensional structure of vertebrate cardiac muscle myosin filaments,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 7, pp. 2386–2390, 2008. View at Publisher · View at Google Scholar · View at PubMed
  29. A. F. Huxley, “Muscle structure and theories of contraction,” Progress in Biophysics and Biophysical Chemistry, vol. 7, pp. 255–318, 1957.
  30. H. E. Huxley, A. Stewart, H. Sosa, and T. Irving, “X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle,” Biophysical Journal, vol. 67, no. 6, pp. 2411–2421, 1994.
  31. K. Wakabayashi, Y. Sugimoto, H. Tanaka, Y. Ueno, Y. Takezawa, and Y. Amemiya, “X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction,” Biophysical Journal, vol. 67, no. 6, pp. 2422–2435, 1994.
  32. H. Higuchi, T. Yanagida, and Y. E. Goldman, “Compliance of thin filaments in skinned fibers of rabbit skeletal muscle,” Biophysical Journal, vol. 69, no. 3, pp. 1000–1010, 1995.
  33. Y. E. Goldman and A. F. Huxley, “Actin compliance: are you pulling my chain?” Biophysical Journal, vol. 67, no. 6, pp. 2131–2133, 1994.
  34. K. Tawada and M. Kimura, “Stiffness of carbodiimide-crosslinked glycerinated muscle fibres in rigor and relaxing solutions at high salt concentrations,” Journal of Muscle Research and Cell Motility, vol. 7, no. 4, pp. 339–350, 1986. View at Publisher · View at Google Scholar
  35. M. A. Bagni, G. Cecchi, B. Colombini, and F. Colomo, “Sarcomere tension-stiffness relation during the tetanus rise in single frog muscle fibres,” Journal of Muscle Research and Cell Motility, vol. 20, no. 5-6, pp. 469–476, 1999. View at Publisher · View at Google Scholar
  36. A. F. Huxley and R. M. Simmons, “Proposed mechanism of force generation in striated muscle,” Nature, vol. 233, no. 5321, pp. 533–538, 1971. View at Publisher · View at Google Scholar
  37. E. Eisenberg, T. L. Hill, and Y. Chen, “Cross-bridge model of muscle contraction. Quantitative analysis,” Biophysical Journal, vol. 29, no. 2, pp. 195–227, 1980.
  38. E. Pate and R. Cooke, “A model of crossbridge action: the effects of ATP, ADP and Pi,” Journal of Muscle Research and Cell Motility, vol. 10, no. 3, pp. 181–196, 1989.
  39. Y. Luo, R. Cooke, and E. Pate, “A model of stress relaxation in cross-bridge systems: effect of a series elastic element,” American Journal of Physiology, vol. 265, no. 1, part 1, pp. C279–C288, 1993.
  40. S. M. Mijailovich, J. J. Fredberg, and J. P. Butler, “On the theory of muscle contraction: filament extensibility and the development of isometric force and stiffness,” Biophysical Journal, vol. 71, no. 3, pp. 1475–1484, 1996.
  41. T. L. Daniel, A. C. Trimble, and P. B. Chase, “Compliant realignment of binding sites in muscle: transient behavior and mechanical tuning,” Biophysical Journal, vol. 74, no. 4, pp. 1611–1621, 1998.
  42. P. B. Chase, J. M. Macpherson, and T. L. Daniel, “A spatially explicit nanomechanical model of the half-sarcomere: myofilament compliance affects Ca2+-activation,” Annals of Biomedical Engineering, vol. 32, no. 11, pp. 1559–1568, 2004. View at Publisher · View at Google Scholar
  43. K. S. Campbell, “Filament compliance effects can explain tension overshoots during force development,” Biophysical Journal, vol. 91, no. 11, pp. 4102–4109, 2006. View at Publisher · View at Google Scholar · View at PubMed
  44. B. C. Tanner, T. L. Daniel, and M. Regnier, “Sarcomere lattice geometry influences cooperative myosin binding in muscle,” PLoS Computational Biology, vol. 3, no. 7, article e115, 2007. View at Publisher · View at Google Scholar · View at PubMed
  45. A. Vilfan, E. Frey, and F. Schwabl, “Elastically coupled molecular motors,” European Physical Journal B, vol. 3, no. 4, pp. 535–546, 1998.
  46. E. Brunello, M. Reconditi, R. Elangovan, et al., “Skeletal muscle resists stretch by rapid binding of the second motor domain of myosin to actin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 50, pp. 20114–20119, 2007. View at Publisher · View at Google Scholar · View at PubMed
  47. D. A. Smith and S. M. Mijailovich, “Toward a unified theory of muscle contraction. II: predictions with the mean-field approximation,” Annals of Biomedical Engineering, vol. 36, no. 8, pp. 1353–1371, 2008. View at Publisher · View at Google Scholar · View at PubMed
  48. J. W. Pringle, “Stretch activation of muscle: function and mechanism,” Proceedings of the Royal Society B, vol. 201, no. 1143, pp. 107–130, 1978.
  49. H. A. Al-Khayat, L. Hudson, M. K. Reedy, T. C. Irving, and J. M. Squire, “Myosin head configuration in relaxed insect flight muscle: X-ray modeled resting cross-bridges in a pre-powerstroke state are poised for actin binding,” Biophysical Journal, vol. 85, no. 2, pp. 1063–1079, 2003.
  50. B. C. Tanner, M. Regnier, and T. L. Daniel, “A spatially explicit model of muscle contraction explains a relationship between activation phase, power and ATP utilization in insect flight,” Journal of Experimental Biology, vol. 211, no. 2, pp. 180–186, 2008. View at Publisher · View at Google Scholar · View at PubMed
  51. K. S. Campbell, “Interactions between connected half-sarcomeres produce emergent mechanical behavior in a mathematical model of muscle,” PLoS Computational Biology, vol. 5, no. 11, Article ID e1000560, 2009. View at Publisher · View at Google Scholar · View at PubMed
  52. M. Linari, G. Piazzesi, and V. Lombardi, “The effect of myofilament compliance on kinetics of force generation by myosin motors in muscle,” Biophysical Journal, vol. 96, no. 2, pp. 583–592, 2009. View at Publisher · View at Google Scholar · View at PubMed
  53. R. J. Levine, M. Elfvin, M. M. Dewey, and B. Walcott, “Paramyosin in invertebrate muscles. II. Content in relation to structure and function,” Journal of Cell Biology, vol. 71, no. 1, pp. 273–279, 1976.
  54. R. Craig and J. L. Woodhead, “Structure and function of myosin filaments,” Current Opinion in Structural Biology, vol. 16, no. 2, pp. 204–212, 2006. View at Publisher · View at Google Scholar · View at PubMed
  55. S. L. Hooper, K. H. Hobbs, and J. B. Thuma, “Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle,” Progress in Neurobiology, vol. 86, no. 2, pp. 72–127, 2008. View at Publisher · View at Google Scholar · View at PubMed
  56. J. M. Squire, Muscle: Design, Diversity, and Disease, Benjamin/Cummings, Menlo Park, Calif, USA, 1986.
  57. T. Nishizaka, H. Miyata, H. Yoshikawa, S. Ishiwata, and K. Kinosita Jr., “Unbinding force of a single motor molecule of muscle measured using optical tweezers,” Nature, vol. 377, no. 6546, pp. 251–254, 1995.
  58. T. Nishizaka, R. Seo, H. Tadakuma, K. Kinosita Jr., and S. Ishiwata, “Characterization of single actomyosin rigor bonds: load dependence of lifetime and mechanical properties,” Biophysical Journal, vol. 79, no. 2, pp. 962–974, 2000.
  59. H. Nakajima, Y. Kunioka, K. Nakano, K. Shimizu, M. Seto, and T. Ando, “Scanning force microscopy of the interaction events between a single molecule of heavy meromyosin and actin,” Biochemical and Biophysical Research Communications, vol. 234, no. 1, pp. 178–182, 1997. View at Publisher · View at Google Scholar · View at PubMed
  60. B. Guo and W. H. Guilford, “Mechanics of actomyosin bonds in different nucleotide states are tuned to muscle contraction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 26, pp. 9844–9849, 2006. View at Publisher · View at Google Scholar · View at PubMed
  61. W. M. Obermann, M. Gautel, K. Weber, and D. O. Fürst, “Molecular structure of the sarcomeric M band: mapping of titin and myosin binding domains in myomesin and the identification of a potential regulatory phosphorylation site in myomesin,” EMBO Journal, vol. 16, no. 2, pp. 211–220, 1997. View at Publisher · View at Google Scholar · View at PubMed
  62. A. Houmeida, J. Holt, L. Tskhovrebova, and J. Trinick, “Studies of the interaction between titin and myosin,” Journal of Cell Biology, vol. 131, no. 6, part 1, pp. 1471–1481, 1995. View at Publisher · View at Google Scholar
  63. G. Ayer and J. O. Vigoreaux, “Flightin is a myosin rod binding protein,” Cell Biochemistry and Biophysics, vol. 38, no. 1, pp. 41–54, 2003. View at Publisher · View at Google Scholar · View at PubMed
  64. E. Flashman, H. Watkins, and C. Redwood, “Localization of the binding site of the C-terminal domain of cardiac myosin-binding protein-C on the myosin rod,” Biochemical Journal, vol. 401, no. 1, pp. 97–102, 2007. View at Publisher · View at Google Scholar · View at PubMed
  65. J. A. Suggs, A. Cammarato, W. A. Kronert, et al., “Alternative S2 hinge regions of the myosin rod differentially affect muscle function, myofibril dimensions and myosin tail length,” Journal of Molecular Biology, vol. 367, no. 5, pp. 1312–1329, 2007. View at Publisher · View at Google Scholar · View at PubMed
  66. M. M. Dewey, B. Walcott, D. E. Colflesh, H. Terry, and R. J. Levine, “Changes in thick filament length in Limulus striated muscle,” Journal of Cell Biology, vol. 75, no. 2, part 1, pp. 366–380, 1977.
  67. E. M. Nagornyak, F. A. Blyakhman, and G. H. Pollack, “Stepwise length changes in single invertebrate thick filaments,” Biophysical Journal, vol. 89, no. 5, pp. 3269–3276, 2005. View at Publisher · View at Google Scholar · View at PubMed
  68. M. Cervera, J. J. Arredondo, and R. M. Ferreres, “Paramyosin and miniparamyosin,” in Nature's Versatile Engine: Insect Flight Muscle Inside and Out, J. O. Vigoreaux, Ed., pp. 76–85, Springer, New York, NY, USA, 2006.
  69. D. C. White, “The elasticity of relaxed insect fibrillar flight muscle,” Journal of Physiology, vol. 343, pp. 31–57, 1983.
  70. P. K. Luther, P. M. Bennett, C. Knupp, et al., “Understanding the organisation and role of myosin binding protein C in normal striated muscle by comparison with MyBP-C knockout cardiac muscle,” Journal of Molecular Biology, vol. 384, no. 1, pp. 60–72, 2008. View at Publisher · View at Google Scholar · View at PubMed
  71. M. F. Schmid and H. F. Epstein, “Muscle thick filaments are rigid coupled tubules, not flexible ropes,” Cell Motility and the Cytoskeleton, vol. 41, no. 3, pp. 195–201, 1998. View at Publisher · View at Google Scholar
  72. B. K. McConnell, K. A. Jones, D. Fatkin, et al., “Dilated cardiomyopathy in homozygous myosin-binding protein-C mutant mice,” Journal of Clinical Investigation, vol. 104, no. 9, pp. 1235–1244, 1999.
  73. B. M. Palmer, B. K. McConnell, G. H. Li, et al., “Reduced cross-bridge dependent stiffness of skinned myocardium from mice lacking cardiac myosin binding protein-C,” Molecular and Cellular Biochemistry, vol. 263, no. 1-2, pp. 73–80, 2004. View at Publisher · View at Google Scholar
  74. M. C. Reedy, B. Bullard, and J. O. Vigoreaux, “Flightin is essential for thick filament assembly and sarcomere stability in Drosophila flight muscles,” Journal of Cell Biology, vol. 151, no. 7, pp. 1483–1499, 2000. View at Publisher · View at Google Scholar
  75. C. Guzmán, S. Jeney, L. Kreplak, et al., “Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy,” Journal of Molecular Biology, vol. 360, no. 3, pp. 623–630, 2006. View at Publisher · View at Google Scholar · View at PubMed
  76. F. Qiu, S. Brendel, P. M. Cunha, et al., “Myofilin, a protein in the thick filaments of insect muscle,” Journal of Cell Science, vol. 118, no. 7, pp. 1527–1536, 2005. View at Publisher · View at Google Scholar · View at PubMed
  77. N. Mücke, L. Kreplak, R. Kirmse, et al., “Assessing the flexibility of intermediate filaments by atomic force microscopy,” Journal of Molecular Biology, vol. 335, no. 5, pp. 1241–1250, 2004. View at Publisher · View at Google Scholar
  78. F. Oosawa, “Actin actin bond strength and the conformational change of F-actin,” Biorheology, vol. 14, no. 1, pp. 11–19, 1977.
  79. F. Oosawa, Y. Maeda, S. Fujime, S. Ishiwata, T. Yanagida, and M. Taniguchi, “Dynamic characteristics of F-actin and thin filaments in vivo and in vitro,” Journal of Mechanochemistry & Cell Motility, vol. 4, no. 1, pp. 63–78, 1977.
  80. M. Linari, I. Dobbie, M. Reconditi, et al., “The stiffness of skeletal muscle in isometric contraction and rigor: the fraction of myosin heads bound to actin,” Biophysical Journal, vol. 74, no. 5, pp. 2459–2473, 1998.
  81. C. A. Rebello and R. D. Ludescher, “Differential dynamic behavior of actin filaments containing tightly- bound Ca2+ or Mg2+ in the presence of myosin heads actively hydrolyzing ATP,” Biochemistry, vol. 38, no. 40, pp. 13288–13295, 1999. View at Publisher · View at Google Scholar
  82. H. Yoshimura, T. Nishio, K. Mihashi, K. Kinosita Jr., and A. Ikegami, “Torsional motion of eosin-labeled F-actin as detected in the time-resolved anisotropy decay of the probe in the sub-millisecond time range,” Journal of Molecular Biology, vol. 179, no. 3, pp. 453–467, 1984.
  83. T. Nishizaka, T. Yagi, Y. Tanaka, and S. Ishiwata, “Right-handed rotation of an actin filament in an in vitro motile system,” Nature, vol. 361, no. 6409, pp. 269–271, 1993. View at Publisher · View at Google Scholar · View at PubMed
  84. C. E. Schutt and U. Lindberg, “Actin as the generator of tension during muscle contraction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 1, pp. 319–323, 1992.
  85. R. Jarosch, “Large-scale models reveal the two-component mechanics of striated muscle,” International Journal of Molecular Sciences, vol. 9, no. 12, pp. 2658–2723, 2008. View at Publisher · View at Google Scholar · View at PubMed
  86. E. Prochniewicz, Q. Zhang, P. A. Janmey, and D. D. Thomas, “Cooperativity in F-actin: binding of gelsolin at the barbed end affects structure and dynamics of the whole filament,” Journal of Molecular Biology, vol. 260, no. 5, pp. 756–766, 1996. View at Publisher · View at Google Scholar · View at PubMed
  87. C. L. Wang, “Caldesmon and the regulation of cytoskeletal functions,” Advances in Experimental Medicine and Biology, vol. 644, pp. 250–272, 2008. View at Publisher · View at Google Scholar
  88. D. H. Heeley, M. H. Watson, A. S. Mak, P. Dubord, and L. B. Smillie, “Effect of phosphorylation on the interaction and functional properties of rabbit striated muscle αα-tropomyosin,” Journal of Biological Chemistry, vol. 264, no. 5, pp. 2424–2430, 1989.
  89. K.-I. Sano, K. Maeda, T. Oda, and Y. Maéda, “The effect of single residue substitutions of serine-283 on the strength of head-to-tail interaction and actin binding properties of rabbit skeletal muscle α-tropomyosin,” Journal of Biochemistry, vol. 127, no. 6, pp. 1095–1102, 2000.
  90. V. S. Rao, E. N. Marongelli, and W. H. Guilford, “Phosphorylation of tropomyosin extends cooperative binding of myosin beyond a single regulatory unit,” Cell Motility and the Cytoskeleton, vol. 66, no. 1, pp. 10–23, 2009. View at Publisher · View at Google Scholar · View at PubMed
  91. E. Prochniewicz, N. Janson, D. D. Thomas, and E. M. De La Cruz, “Cofilin increases the torsional flexibility and dynamics of actin filaments,” Journal of Molecular Biology, vol. 353, no. 5, pp. 990–1000, 2005. View at Publisher · View at Google Scholar · View at PubMed
  92. B. R. McCullough, L. Blanchoin, J.-L. Martiel, and E. M. De La Cruz, “Cofilin increases the bending flexibility of actin filaments: implications for sSevering and cell mechanics,” Journal of Molecular Biology, vol. 381, no. 3, pp. 550–558, 2008. View at Publisher · View at Google Scholar · View at PubMed
  93. B. Bugyi, G. Papp, G. Hild, et al., “Formins regulate actin filament flexibility through long range allosteric interactions,” Journal of Biological Chemistry, vol. 281, no. 16, pp. 10727–10736, 2006. View at Publisher · View at Google Scholar · View at PubMed
  94. A. S. McElhinny, S. T. Kazmierski, S. Labeit, and C. C. Gregorio, “Nebulin: the nebulous, multifunctional giant of striated muscle,” Trends in Cardiovascular Medicine, vol. 13, no. 5, pp. 195–201, 2003. View at Publisher · View at Google Scholar
  95. B. Bullard, C. Burkart, S. Labeit, and K. Leonard, “The function of elastic proteins in the oscillatory contraction of insect flight muscle,” Journal of Muscle Research and Cell Motility, vol. 26, no. 6–8, pp. 479–485, 2005. View at Publisher · View at Google Scholar · View at PubMed
  96. I. Agarkova and J.-C. Perriard, “The M-band: an elastic web that crosslinks thick filaments in the center of the sarcomere,” Trends in Cell Biology, vol. 15, no. 9, pp. 477–485, 2005. View at Publisher · View at Google Scholar · View at PubMed
  97. J. O. Vigoreaux, “The muscle Z band: lessons in stress management,” Journal of Muscle Research and Cell Motility, vol. 15, no. 3, pp. 237–255, 1994.
  98. A. A. Shabarchin and A. K. Tsaturyan, “Proposed role of the M-band in sarcomere mechanics and mechano-sensing: a model study,” Biomechanics and Modeling in Mechanobiology, vol. 9, no. 2, pp. 163–175, 2009. View at Publisher · View at Google Scholar · View at PubMed
  99. L. G. Prado, I. Makarenko, C. Andresen, M. Krüger, C. A. Opitz, and W. A. Linke, “Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles,” Journal of General Physiology, vol. 126, no. 5, pp. 461–480, 2005. View at Publisher · View at Google Scholar · View at PubMed
  100. N. Fukuda, T. Terui, S. Ishiwata, and S. Kurihara, “Titin-based regulations of diastolic and systolic functions of mammalian cardiac muscle,” Journal of Molecular and Cellular Cardiology, vol. 48, no. 5, pp. 876–881, 2010. View at Publisher · View at Google Scholar · View at PubMed
  101. M. Krüger and W. A. Linke, “Titin-based mechanical signalling in normal and failing myocardium,” Journal of Molecular and Cellular Cardiology, vol. 46, no. 4, pp. 490–498, 2009. View at Publisher · View at Google Scholar
  102. C. Neagoe, M. Kulke, F. Del Monte, et al., “Titin isoform switch in ischemic human heart disease,” Circulation, vol. 106, no. 11, pp. 1333–1341, 2002. View at Publisher · View at Google Scholar
  103. H. L. Granzier and K. Wang, “Interplay between passive tension and strong and weak binding cross-bridges in insect indirect flight muscle: a functional dissection by gelsolin-mediated thin filament removal,” Journal of General Physiology, vol. 101, no. 2, pp. 235–270, 1993.
  104. I. A. Telley, J. Denoth, E. Stüssi, G. Pfitzer, and R. Stehle, “Half-sarcomere dynamics in myofibrils during activation and relaxation studied by tracking fluorescent markers,” Biophysical Journal, vol. 90, no. 2, pp. 514–530, 2006. View at Publisher · View at Google Scholar · View at PubMed
  105. M. A. Geeves and S. S. Lehrer, “Dynamics of the muscle thin filament regulatory switch: the size of the cooperative unit,” Biophysical Journal, vol. 67, no. 1, pp. 273–282, 1994.
  106. M. Regnier, A. J. Rivera, C.-K. Wang, M. A. Bates, P. B. Chase, and A. M. Gordon, “Thin filament near-neighbour regulatory unit interactions affect rabbit skeletal muscle steady-state force-Ca2+ relations,” Journal of Physiology, vol. 540, no. 2, pp. 485–497, 2002. View at Publisher · View at Google Scholar
  107. T. E. Gillis, D. A. Martyn, A. J. Rivera, and M. Regnier, “Investigation of thin filament near-neighbour regulatory unit interactions during force development in skinned cardiac and skeleta muscle,” Journal of Physiology, vol. 580, no. 2, pp. 561–576, 2007. View at Publisher · View at Google Scholar · View at PubMed
  108. F. Fuchs and D. A. Martyn, “Length-dependent Ca2+ activation in cardiac muscle: some remaining questions,” Journal of Muscle Research and Cell Motility, vol. 26, no. 4-5, pp. 199–212, 2005. View at Publisher · View at Google Scholar · View at PubMed
  109. G. D'Antona, M. A. Pellegrino, R. Adami, et al., “The effect of ageing and immobilization on structure and function of human skeletal muscle fibres,” Journal of Physiology, vol. 552, no. 2, pp. 499–511, 2003. View at Publisher · View at Google Scholar · View at PubMed
  110. S. Acharyya, K. J. Ladner, L. L. Nelsen, et al., “Cancer cachexia is regulated by selective targeting of skeletal muscle gene products,” Journal of Clinical Investigation, vol. 114, no. 3, pp. 370–378, 2004. View at Publisher · View at Google Scholar
  111. M. J. Toth, D. E. Matthews, P. A. Ades, et al., “Skeletal muscle myofibrillar protein metabolism in heart failure: relationship to immune activation and functional capacity,” American Journal of Physiology, vol. 288, no. 4, pp. E685–E692, 2005. View at Publisher · View at Google Scholar · View at PubMed
  112. M. S. Miller, P. Vanburen, M. M. Lewinter, et al., “Mechanisms underlying skeletal muscle weakness in human heart failure: alterations in single fiber myosin protein content and function,” Circulation, vol. 2, no. 6, pp. 700–706, 2009.
  113. H. W. Van Hees, H. F. Van Der Heijden, C. A. Ottenheijm, et al., “Diaphragm single-fiber weakness and loss of myosin in congestive heart failure rats,” American Journal of Physiology, vol. 293, no. 1, pp. H819–H828, 2007. View at Publisher · View at Google Scholar · View at PubMed
  114. C. A. Ottenheijm, L. M. Heunks, T. Hafmans, et al., “Titin and diaphragm dysfunction in chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 173, no. 5, pp. 527–534, 2006. View at Publisher · View at Google Scholar · View at PubMed
  115. L. Larsson, X. Li, L. Edstrom, et al., “Acute quadriplegia and loss of muscle myosin in patients treated with nondepolarizing neuromuscular blocking agents and corticosteroids: mechanisms at the cellular and molecular levels,” Critical Care Medicine, vol. 28, no. 1, pp. 34–45, 2000.
  116. F. Haddad, R. R. Roy, H. Zhong, V. R. Edgerton, and K. M. Baldwin, “Atrophy responses to muscle inactivity. I. Cellular markers of protein deficits,” Journal of Applied Physiology, vol. 95, no. 2, pp. 781–790, 2003.
  117. M. S. Miller, P. Lekkas, J. M. Braddock, et al., “Aging enhances indirect flight muscle fiber performance yet decreases flight ability in Drosophila,” Biophysical Journal, vol. 95, no. 5, pp. 2391–2401, 2008. View at Publisher · View at Google Scholar · View at PubMed
  118. M. H. Dickinson and J. R. Lighton, “Muscle efficiency and elastic storage in the flight motor of Drosophila,” Science, vol. 268, no. 5207, pp. 87–90, 1995.
  119. C. P. Ellington, “The aerodynamics of hovering insect flight.VI. Lift and power requirements,” Philosophical Transactions of the Royal Society of London Series B, vol. 305, no. 1122, pp. 145–181, 1984.
  120. D. Frank, C. Kuhn, H. A. Katus, and N. Frey, “The sarcomeric Z-disc: a nodal point in signalling and disease,” Journal of Molecular Medicine, vol. 84, no. 6, pp. 446–468, 2006. View at Publisher · View at Google Scholar · View at PubMed
  121. N. D. Epstein and J. S. Davis, “Sensing stretch is fundamental,” Cell, vol. 112, no. 2, pp. 147–150, 2003. View at Publisher · View at Google Scholar
  122. M. Hoshijima, “Mechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures,” American Journal of Physiology, vol. 290, no. 4, pp. H1313–H1325, 2006. View at Publisher · View at Google Scholar · View at PubMed
  123. U. Nongthomba, M. Cummins, S. Clark, J. O. Vigoreaux, and J. C. Sparrow, “Suppression of muscle hypercontraction by mutations in the myosin heavy chain gene of Drosophila melanogaster,” Genetics, vol. 164, no. 1, pp. 209–222, 2003.
  124. K. Vijayan, J. L. Thompson, K. M. Norenberg, R. H. Fitts, and D. A. Riley, “Fiber-type susceptibility to eccentric contraction-induced damage of hindlimb-unloaded rat AL muscles,” Journal of Applied Physiology, vol. 90, no. 3, pp. 770–776, 2001.
  125. E. P. Debold, J. Romatowski, and R. H. Fitts, “The depressive effect of Pi on the force-pCa relationship in skinned single muscle fibers is temperature dependent,” American Journal of Physiology, vol. 290, no. 4, pp. C1041–C1050, 2006. View at Publisher · View at Google Scholar · View at PubMed
  126. S. Lange, I. Agarkova, J.-C. Perriard, and E. Ehler, “The sarcomeric M-band during development and in disease,” Journal of Muscle Research and Cell Motility, vol. 26, no. 6–8, pp. 375–379, 2005. View at Publisher · View at Google Scholar · View at PubMed
  127. A. Weiss, S. Schiaffino, and L. A. Leinwand, “Comparative sequence analysis of the complete human sarcomeric myosin heavy chain family: implications for functional diversity,” Journal of Molecular Biology, vol. 290, no. 1, pp. 61–75, 1999. View at Publisher · View at Google Scholar · View at PubMed
  128. J. M. Squire, T. Bekyarova, G. Farman, et al., “The myosin filament superlattice in the flight muscles of flies: a-band lattice optimisation for stretch-activation?” Journal of Molecular Biology, vol. 361, no. 5, pp. 823–838, 2006. View at Publisher · View at Google Scholar · View at PubMed
  129. S. Trachtenberg and I. Hammel, “The rigidity of bacterial flagellar filaments and its relation to filament polymorphism,” Journal of Structural Biology, vol. 109, no. 1, pp. 18–27, 1992.
  130. R. W. Kensler, “The mammalian cardiac muscle thick filament: backbone contributions to meridional reflections,” Journal of Structural Biology, vol. 149, no. 3, pp. 313–324, 2005. View at Publisher · View at Google Scholar · View at PubMed
  131. M. D. Goode, “Ultrastructure and contractile properties of isolated myofibrils and myofilaments from drosophila flight muscle,” Transactions of the American Microscopical Society, vol. 91, no. 2, pp. 182–194, 1972.
  132. E. Oroudjev, J. Soares, S. Arcdiacono, J. B. Thompson, S. A. Fossey, and H. G. Hansma, “Segmented nanofibers of spider dragline silk: atomic force microscopy and single-molecule force spectroscopy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, supplement 2, pp. 6460–6465, 2002. View at Publisher · View at Google Scholar · View at PubMed
  133. E. Di Cola, T. A. Waigh, J. Trinick, et al., “Persistence length of titin from rabbit skeletal muscles measured with scattering and microrheology techniques,” Biophysical Journal, vol. 88, no. 6, pp. 4095–4106, 2005. View at Publisher · View at Google Scholar · View at PubMed
  134. M. S. Z. Kellermayer, C. Bustamante, and H. L. Granzier, “Mechanics and structure of titin oligomers explored with atomic force microscopy,” Biochimica et Biophysica Acta, vol. 1604, no. 2, pp. 105–114, 2003. View at Publisher · View at Google Scholar
  135. A. Nagy, L. Grama, T. Huber, et al., “Hierarchical extensibility in the PEVK domain of skeletal-muscle titin,” Biophysical Journal, vol. 89, no. 1, pp. 329–336, 2005. View at Publisher · View at Google Scholar · View at PubMed
  136. Z.-P. Luo, Y.-L. Sun, T. Fujii, and K.-N. An, “Single molecule mechanical properties of type II collagen and hyaluronan measured by optical tweezers,” Biorheology, vol. 41, no. 3-4, pp. 247–254, 2004.
  137. Y.-L. Sun, Z.-P. Luo, A. Fertala, and K.-N. An, “Stretching type II collagen with optical tweezers,” Journal of Biomechanics, vol. 37, no. 11, pp. 1665–1669, 2004. View at Publisher · View at Google Scholar · View at PubMed
  138. B. Bullard, T. Garcia, V. Benes, M. C. Leake, W. A. Linke, and A. F. Oberhauser, “The molecular elasticity of the insect flight muscle proteins projectin and kettin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 12, pp. 4451–4456, 2006. View at Publisher · View at Google Scholar · View at PubMed
  139. A. N. Round, M. Berry, T. J. McMaster, et al., “Heterogeneity and persistence length in human ocular mucins,” Biophysical Journal, vol. 83, no. 3, pp. 1661–1670, 2002.
  140. C. Rivetti, M. Guthold, and C. Bustamante, “Scanning force microscopy of DNA deposited onto mica: equilibration versus kinetic trapping studied by statistical polymer chain analysis,” Journal of Molecular Biology, vol. 264, no. 5, pp. 919–932, 1996. View at Publisher · View at Google Scholar · View at PubMed
  141. C. P. Brangwynne, G. H. Koenderink, E. Barry, Z. Dogic, F. C. MacKintosh, and D. A. Weitz, “Bending dynamics of fluctuating biopolymers probed by automated high-resolution filament tracking,” Biophysical Journal, vol. 93, no. 1, pp. 346–359, 2007. View at Publisher · View at Google Scholar · View at PubMed
  142. R. Duggal and M. Pasquali, “Dynamics of individual single-walled carbon nanotubes in water by real-time visualization,” Physical Review Letters, vol. 96, no. 24, Article ID 246104, 2006. View at Publisher · View at Google Scholar
  143. F. Pampaloni, G. Lattanzi, A. Jonáš, T. Surrey, E. Frey, and E.-L. Florin, “Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 27, pp. 10248–10253, 2006. View at Publisher · View at Google Scholar · View at PubMed