About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 505694, 15 pages
http://dx.doi.org/10.1155/2010/505694
Research Article

The Unexpected Role for the Aryl Hydrocarbon Receptor on Susceptibility to Experimental Toxoplasmosis

1Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México (UNAM), CP 54090, o. Tlalnepantla, Edo. de México, Mexico
2Departamento de Toxicología, Centro de Investigación y Estudios Avanzados-IPN, Avenue IPN 2508, San Pedro Zacatenco, CP 07360 México, DF, Mexico
3Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados-IPN, Avenue IPN 2508, San Pedro Zacatenco, CP 07360 México, DF, Mexico
4Depertamento de inmunología, Instituto de Investigaciones Biomédicas, UNAM, México, DF, Mexico

Received 20 August 2009; Accepted 15 October 2009

Academic Editor: Luis I. Terrazas

Copyright © 2010 Yuriko Sanchez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. P. Whitlock Jr., “Induction of cytochrome P4501A1,” Annual Review of Pharmacology and Toxicology, vol. 39, pp. 103–125, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. M. S. Denison and S. R. Nagy, “Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals,” Annual Review of Pharmacology and Toxicology, vol. 43, pp. 309–334, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. Z.-W. Lai, C. Hundeiker, E. Gleichmann, and C. Esser, “Cytokine gene expression during ontogeny in murine thymus on activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin,” Molecular Pharmacology, vol. 52, no. 1, pp. 30–37, 1997. View at Scopus
  4. B. A. Jensen, R. J. Leeman, J. J. Schlezinger, and D. H. Sherr, “Aryl hydrocarbon receptor (AhR) agonists suppress interleukin-6 expression by bone marrow stromal cells: an immunotoxicology study,” Environmental Health, vol. 2, article 1, pp. 1–13, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. M. N'Diaye, E. Le Ferrec, D. Lagadic-Gossmann, et al., “Aryl hydrocarbon receptor- and calcium-dependent induction of the chemokine CCL1 by the environmental contaminant benzo[a]pyrene,” Journal of Biological Chemistry, vol. 281, no. 29, pp. 19906–19915, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. C. F. A. Vogel, E. Sciullo, P. Wong, P. Kuzmicky, N. Kado, and F. Matsumura, “Induction of proinflammatory cytokines and C-reative protein in human macrophage cell line U937 exposed to air pollution particulates,” Environmental Health Perspectives, vol. 113, no. 11, pp. 1536–1541, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. T. K. Warren, K. A. Mitchell, and B. P. Lawrence, “Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) suppresses the humoral and cell-mediated immune responses to influenza A virus without affecting cytolytic activity in the lung,” Toxicological Sciences, vol. 56, no. 1, pp. 114–123, 2000. View at Scopus
  8. M.-S. Jeon and C. Esser, “The murine IL-2 promoter contains distal regulatory elements responsive to the Ah receptor, a member of the evolutionarily conserved bHLH-PAS transcription factor family,” Journal of Immunology, vol. 165, no. 12, pp. 6975–6983, 2000. View at Scopus
  9. J.-H. Yang, C. Vogel, and J. Abel, “A malignant transformation of human cells by 2,3,7,8-tetrachlorodibenzo-p-dioxin exhibits altered expressions of growth regulatory factors,” Carcinogenesis, vol. 20, no. 1, pp. 13–18, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Negishi, Y. Kato, O. Ooneda, et al., “Effects of aryl hydrocarbon receptor signaling on the modulation of Th1/Th2 balance,” Journal of Immunology, vol. 175, no. 11, pp. 7348–7356, 2005. View at Scopus
  11. M. S. Denison, A. Pandini, S. R. Nagy, E. P. Baldwin, and L. Bonati, “Ligand binding and activation of the Ah receptor,” Chemico-Biological Interactions, vol. 141, no. 1-2, pp. 3–24, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. Y.-Z. Gu, J. B. Hogenesch, and C. A. Bradfield, “The PAS superfamily: sensors of environmental and developmental signals,” Annual Review of Pharmacology and Toxicology, vol. 40, pp. 519–561, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. B. L. Taylor and I. B. Zhulin, “PAS domains: internal sensors of oxygen, redox potential, and light,” Microbiology and Molecular Biology Reviews, vol. 63, no. 2, pp. 479–506, 1999. View at Scopus
  14. R. Villalobos-Molina, F. G. Vázquez-Cuevas, J. J. López-Guerrero, et al., “Vascular α1D-adrenoceptors are overexpressed in aorta of the aryl hydrocarbon receptor null mouse: role of increased angiotensin II,” Autonomic and Autacoid Pharmacology, vol. 28, no. 2-3, pp. 61–67, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Rodríguez-Sosa, G. Elizondo, R. M. López-Durán, I. Rivera, F. J. Gonzalez, and L. Vega, “Over-production of IFN-γ and IL-12 in AhR-null mice,” FEBS Letters, vol. 579, no. 28, pp. 6403–6410, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Fernandez-Salguero, T. Pineau, D. M. Hilbert, et al., “Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor,” Science, vol. 268, no. 5211, pp. 722–726, 1995. View at Scopus
  17. C. Esser, A. Rannug, and B. Stockinger, “The aryl hydrocarbon receptor in immunity,” Trends in Immunology, vol. 30, no. 9, pp. 447–454, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Jux, S. Kadow, and C. Esser, “Langerhans cell maturation and contact hypersensitivity are impaired in aryl hydrocarbon receptor-null mice,” Journal of Immunology, vol. 182, no. 11, pp. 6709–6717, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Veldhoen, K. Hirota, A. M. Westendorf, et al., “The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins,” Nature, vol. 453, no. 7191, pp. 106–109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. B. P. Lawrence and B. A. Vorderstrasse, “Activation of the aryl hydrocarbon receptor diminishes the memory response to homotypic influenza virus infection but does not impair host resistance,” Toxicological Sciences, vol. 79, no. 2, pp. 304–314, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. B. A. Vorderstrasse and B. P. Lawrence, “Protection against lethal challenge with Streptococcus pneumoniae is conferred by aryl hydrocarbon receptor activation but is not associated with an enhanced inflammatory response,” Infection and Immunity, vol. 74, no. 10, pp. 5679–5686, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Z. Shi, N. G. Faith, Y. Nakayama, M. Suresh, H. Steinberg, and C. J. Czuprynski, “The aryl hydrocarbon receptor is required for optimal resistance to Listeria monocytogenes infection in mice,” Journal of Immunology, vol. 179, no. 10, pp. 6952–6962, 2007. View at Scopus
  23. E. Y. Denkers and R. T. Gazzinelli, “Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection,” Clinical Microbiology Reviews, vol. 11, no. 4, pp. 569–588, 1998. View at Scopus
  24. L. A. Lieberman and C. A. Hunter, “The role of cytokines and their signaling pathways in the regulation of immunity to Toxoplasma gondii,” International Reviews of Immunology, vol. 21, no. 4-5, pp. 373–403, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Scharton-Kersten, E. Y. Denkers, R. Gazzinelli, and A. Sher, “Role of IL12 in induction of cell-mediated immunity to Toxoplasma gondii,” Research in Immunology, vol. 146, no. 7-8, pp. 539–545, 1995. View at Publisher · View at Google Scholar · View at Scopus
  26. G. S. Yap and A. Sher, “Cell-mediated immunity to Toxoplasma gondii: initiation, regulation and effector function,” Immunobiology, vol. 201, no. 2, pp. 240–247, 1999. View at Scopus
  27. A. Sher, I. P. Oswald, S. Hieny, and R. T. Gazzinelli, “Toxoplasma gondii induces a T-independent IFN-γ response in natural killer cells that requires both adherent accessory cells and tumor necrosis factor-α,” Journal of Immunology, vol. 150, no. 9, pp. 3982–3989, 1993. View at Scopus
  28. R. T. Gazzinelli, F. T. Hakim, S. Hieny, G. M. Shearer, and A. Sher, “Synergistic role of CD4+ and CD8+ T lymphocytes in IFN-γ production and protective immunity induced by an attenuated Toxoplasma gondii vaccine,” Journal of Immunology, vol. 146, no. 1, pp. 286–292, 1991. View at Scopus
  29. M. Flores, R. Saavedra, R. Bautista, et al., “Macrophage migration inhibitory factor (MIF) is critical for the host resistance against Toxoplasma gondii,” FASEB Journal, vol. 22, no. 10, pp. 3661–3671, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. T. M. Scharton-Kersten, G. Yap, J. Magram, and A. Sher, “Inducible nitric oxide is essential for host control of persistent but not acute infection with the intracellular pathogen Toxoplasma gondii,” Journal of Experimental Medicine, vol. 185, no. 7, pp. 1261–1273, 1997. View at Publisher · View at Google Scholar · View at Scopus
  31. R. T. Gazzinelli, S. Hieny, T. A. Wynn, S. Wolf, and A. Sher, “Interleukin 12 is required for the T-lymphocyte-independent induction of interferon γ by an intracellular parasite and induces resistance in T-cell-deficient hosts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 13, pp. 6115–6119, 1993. View at Scopus
  32. T. Fukao, D. M. Frucht, G. Yap, M. Gadina, J. J. O'Shea, and S. Koyasu, “Inducible expression of Stat4 in dendritic cells and macrophages and its critical role in innate and adaptive immune responses,” Journal of Immunology, vol. 166, no. 7, pp. 4446–4455, 2001. View at Scopus
  33. J. Aliberti, S. Hieny, C. Reis e Sousa, C. N. Serhan, and A. Sher, “Lipoxin-mediated inhibition of IL-12 production by DCs: a mechanism for regulation of microbial immunity,” Nature Immunology, vol. 3, no. 1, pp. 76–82, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Saavedra, R. Leyva, E. P. Tenorio, et al., “CpG-containing ODN has a limited role in the protection against Toxoplasma gondii,” Parasite Immunology, vol. 26, no. 2, pp. 67–73, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. W. L. Homan, M. Vercammen, J. de Braekeleer, and H. Verschueren, “Identification of a 200- to 300-fold repetitive 529 bp DNA fragment in Toxoplasma gondii, and its use for diagnostic and quantitative PCR,” International Journal for Parasitology, vol. 30, no. 1, pp. 69–75, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. G. C. Ulett, N. Ketheesan, and R. G. Hirst, “Cytokine gene expression in innately susceptible BALB/c mice and relatively resistant C57BL/6 mice during infection with virulent Burkholderia pseudomallei,” Infection and Immunity, vol. 68, no. 4, pp. 2034–2042, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. L. I. Terrazas, D. Montero, C. A. Terrazas, J. L. Reyes, and M. Rodríguez-Sosa, “Role of the programmed death-1 pathway in the suppressive activity of alternatively activated macrophages in experimental cysticercosis,” International Journal for Parasitology, vol. 35, no. 13, pp. 1349–1358, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. Q. Tong, G. Dalgin, H. Xu, C.-N. Ting, J. M. Leiden, and G. S. Hotamisligil, “Function of GATA transcription factors in preadipocyte-adipocyte transition,” Science, vol. 290, no. 5489, pp. 134–138, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Bonizzi, J. Piette, M.-P. Merville, and V. Bours, “Distinct signal transduction pathways mediate nuclear factor-κB induction by IL-1β in epithelial and lymphoid cells,” Journal of Immunology, vol. 159, no. 11, pp. 5264–5272, 1997. View at Scopus
  40. M. Renshaw, J. Rockwell, C. Engleman, A. Gewirtz, J. Katz, and S. Sambhara, “Cutting edge: impaired toll-like receptor expression and function in aging,” Journal of Immunology, vol. 169, no. 9, pp. 4697–4701, 2002. View at Scopus
  41. M. Rodríguez-Sosa, L. E. Rosas, J. R. David, R. Bojalil, A. R. Satoskar, and L. I. Terrazas, “Macrophage migration inhibitory factor plays a critical role in mediating protection against the helminth parasite Taenia crassiceps,” Infection and Immunity, vol. 71, no. 3, pp. 1247–1254, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. J. L. Reyes, L. I. Terrazas, B. Espinoza, et al., “Macrophage migration inhibitory factor contributes to host defense against acute Trypanosoma cruzi infection,” Infection and Immunity, vol. 74, no. 6, pp. 3170–3179, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. D. L. Granger, R. R. Taintor, K. S. Boockvar, and J. B. Hibbs Jr., “Measurement of nitrate and nitrite in biological samples using nitrate reductase and Griess reaction,” Methods in Enzymology, vol. 268, pp. 142–151, 1996. View at Scopus
  44. P. Migliorini, G. Corradin, and S. B. Corradin, “Macrophage NO2 production as a sensitive and rapid assay for the quantitation of murine IFN-γ,” Journal of Immunological Methods, vol. 139, no. 1, pp. 107–114, 1991. View at Publisher · View at Google Scholar · View at Scopus
  45. G. Trinchieri, “Interleukin-12: a cytokine at the interface of inflammation and immunity,” Advances in Immunology, vol. 70, pp. 83–243, 1998. View at Scopus
  46. G. Yap, M. Pesin, and A. Sher, “Cutting edge: IL-12 is required for the maintenance of IFN-γ production in T cells mediating chronic resistance to the intracellular pathogen, Toxoplasma gondii,” Journal of Immunology, vol. 165, no. 2, pp. 628–631, 2000. View at Scopus
  47. J. Aliberti, C. Reis e Sousa, M. Schito, et al., “CCR5 provides a signal for microbial induced production of IL-12 by CD8α+ dendritic cells,” Nature Immunology, vol. 1, no. 1, pp. 83–87, 2000. View at Scopus
  48. F. S. Machado, J. E. Johndrow, L. Esper, et al., “Anti-inflammatory actions of lipoxin A4 and aspirin-triggered lipoxin are SOCS-2 dependent,” Nature Medicine, vol. 12, no. 3, pp. 330–334, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. B. A. Vorderstrasse, J. A. Cundiff, and B. P. Lawrence, “A dose-response study of the effects of prenatal and lactational exposure to TCDD on the immune response to influenza A virus,” Journal of Toxicology and Environmental Health A, vol. 69, no. 6, pp. 445–463, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Suzuki, M. A. Orellana, R. D. Schreiber, and J. S. Remington, “Interferon-γ: the major mediator of resistance against Toxoplasma gondii,” Science, vol. 240, no. 4851, pp. 516–518, 1988. View at Scopus
  51. U. Gross, O. Keksel, and M. L. Dardé, “Value of detecting immunoglobulin E antibodies for the serological diagnosis of Toxoplasma gondii infection,” Clinical and Diagnostic Laboratory Immunology, vol. 4, no. 3, pp. 247–251, 1997. View at Scopus
  52. J. Matowicka-Karna, V. Dymicka-Piekarska, and H. Kemona, “Does Toxoplasma gondii infection affect the levels of IgE and cytokines (IL-5, IL-6, IL-10, IL-12, and TNF-alpha)?” Clinical and Developmental Immunology, vol. 2009, Article ID 374696, 4 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. I. A. Khan, J. D. Schwartzman, T. Matsuura, and L. H. Kasper, “A dichotomous role for nitric oxide during acute Toxoplasma gondii infection in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 25, pp. 13955–13960, 1997. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Suzuki, A. Sher, G. Yap, et al., “IL-10 is required for prevention of necrosis in the small intestine and mortality in both genetically resistant BALB/c and susceptible C57BL/6 mice following peroral infection with Toxoplasma gondii,” Journal of Immunology, vol. 164, no. 10, pp. 5375–5382, 2000. View at Scopus
  55. G. Elizondo, P. Fernandez-Salguero, M. S. Sheikh, et al., “Altered cell cycle control at the G2/M phases in aryl hydrocarbon receptor-null embryo fibroblast,” Molecular Pharmacology, vol. 57, no. 5, pp. 1056–1063, 2000. View at Scopus
  56. C. J. Funatake, N. B. Marshall, L. B. Steppan, D. V. Mourich, and N. I. Kerkvliet, “Cutting edge: activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin generates a population of CD4+CD25+ cells with characteristics of regulatory T cells,” Journal of Immunology, vol. 175, no. 7, pp. 4184–4188, 2005. View at Scopus
  57. F. Yarovinsky and A. Sher, “Toll-like receptor recognition of Toxoplasma gondii,” International Journal for Parasitology, vol. 36, no. 3, pp. 255–259, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. H.-S. Mun, F. Aosai, K. Norose, et al., “TLR2 as an essential molecule for protective immunity against Toxoplasma gondii infection,” International Immunology, vol. 15, no. 9, pp. 1081–1087, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Chamorro, J. J. García-Vallejo, W. W. Unger, et al., “TLR triggering on tolerogenic dendritic cells results in TLR2 up-regulation and a reduced proinflammatory immune program,” Journal of Immunology, vol. 183, no. 5, pp. 2984–2994, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. M. G. Netea, R. Sutmuller, C. Hermann, et al., “Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells,” Journal of Immunology, vol. 172, no. 6, pp. 3712–3718, 2004. View at Scopus
  61. Y. Yanagawa and K. Onoé, “Enhanced IL-10 production by TLR4- and TLR2-primed dendritic cells upon TLR restimulation,” Journal of Immunology, vol. 178, no. 10, pp. 6173–6180, 2007. View at Scopus
  62. C. M. Schaldach, J. Riby, and L. F. Bjeldanes, “Lipoxin A4: a new class of ligand for the Ah receptor,” Biochemistry, vol. 38, no. 23, pp. 7594–7600, 1999. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Aliberti, C. Serhan, and A. Sher, “Parasite-induced lipoxin A4 is an endogenous regulator of IL-12 production and immunopathology in Toxoplasma gondii infection,” Journal of Experimental Medicine, vol. 196, no. 9, pp. 1253–1262, 2002. View at Publisher · View at Google Scholar · View at Scopus