About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 534501, 7 pages
http://dx.doi.org/10.1155/2010/534501
Research Article

Nonintegrating Lentiviral Vector-Based Vaccine Efficiently Induces Functional and Persistent CD8+ T Cell Responses in Mice

1Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
2Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
3Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
4Division of Infectious Diseases, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, P.O. Box 1090, New York, NY 10029, USA

Received 14 December 2009; Revised 27 February 2010; Accepted 9 March 2010

Academic Editor: Kim Klonowski

Copyright © 2010 Donatella R. M. Negri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. McMichael, “Principles of immunology,” in Oxford Textbook of Medicine, D. A. Warrell, T. M. Cox, J. D. Firth, and E. J. Benz, Eds., pp. 131–144, Oxford University Press, Oxford, UK, 4th edition, 2003.
  2. X. Jin, D. E. Bauer, S. E. Tuttleton, et al., “Dramatic rise in plasma viremia after CD8+ T cell depletion in simian immunodeficiency virus-infected macaques,” The Journal of Experimental Medicine, vol. 189, no. 6, pp. 991–998, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. J. E. Schmitz, M. J. Kuroda, S. Santra, et al., “Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes,” Science, vol. 283, no. 5403, pp. 857–860, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. B. T. Korber, N. L. Letvin, and B. F. Haynes, “T-cell vaccine strategies for human immunodeficiency virus, the virus with a thousand faces,” The Journal of Virology, vol. 83, no. 17, pp. 8300–8314, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. R. A. Koup, M. Roederer, L. Lamoreaux, et al., “Priming immunization with DNA augments immunogenicity of recombinant adenoviral vectors for both HIV-1 specific antibody and T-cell responses,” PLoS ONE, vol. 5, no. 2, article e9015, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. Y. He and L. D. Falo Jr., “Lentivirus as a potent and mechanistically distinct vector for genetic immunization,” Current Opinion in Molecular Therapeutics, vol. 9, no. 5, pp. 439–446, 2007. View at Scopus
  7. N. Chinnasamy, D. Chinnasamy, J. F. Toso, et al., “Efficient gene transfer to human peripheral blood monocyte-derived dendritic cells using human immunodeficiency virus type 1-based lentiviral vectors,” Human Gene Therapy, vol. 11, no. 13, pp. 1901–1909, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. J. Dyall, J.-B. Latouche, S. Schnell, and M. Sadelain, “Lentivirus-transduced human monocyte-derived dendritic cells efficiently stimulate antigen-specific cytotoxic T lymphocytes,” Blood, vol. 97, no. 1, pp. 114–121, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. M. C. Iglesias, K. Mollier, A.-S. Beignon, et al., “Lentiviral vectors encoding HIV-1 polyepitopes induce broad CTL responses in vivo,” Molecular Therapy, vol. 15, no. 6, pp. 1203–1210, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. V. Buffa, D. R. M. Negri, P. Leone, et al., “A single administration of lentiviral vectors expressing either full-length human immunodeficiency virus 1 (HIV-1)HXB2 Rev/ Env or codon-optimized HIV-1JR-FL gp 120 generates durable immune responses in mice,” The Journal of General Virology, vol. 87, no. 6, pp. 1625–1634, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. V. Buffa, D. R. M. Negri, P. Leone, et al., “Evaluation of a self-inactivating lentiviral vector expressing simian immunodeficiency virus gag for induction of specific immune responses in vitro and in vivo,” Viral Immunology, vol. 19, no. 4, pp. 690–701, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A.-S. Beignon, K. Mollier, C. Liard, et al., “A lentiviral vector-based prime/boost vaccination against AIDS: a pilot study shows protection against Simian immunodeficiency virus SIVmac251 challenge in macaques,” The Journal of Virology, vol. 83, no. 21, pp. 10963–10974, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. J. Vargas Jr., G. L. Gusella, V. Najfeld, M. E. Klotman, and A. Cara, “Novel integrase-defective lentiviral episomal vectors for gene transfer,” Human Gene Therapy, vol. 15, no. 4, pp. 361–372, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. A. Cara and M. E. Klotman, “Retroviral E-DNA: persistence and gene expression in nondividing immune cells,” Journal of Leukocyte Biology, vol. 80, no. 5, pp. 1013–1017, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. Y. Zheng, I. Ourmanov, and V. M. Hirsch, “Persistent transcription of a nonintegrating mutant of simian immunodeficiency virus in rhesus macrophages,” Virology, vol. 372, no. 2, pp. 291–299, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. D. R. M. Negri, Z. Michelini, S. Baroncelli, et al., “Successful immunization with a single injection of non-integrating lentiviral vector,” Molecular Therapy, vol. 15, no. 9, pp. 1716–1723, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. F. Coutant, M.-P. Frenkiel, P. Despres, and P. Charneau, “Protective antiviral immunity conferred by a nonintegrative lentiviral vector-based vaccine,” PLoS ONE, vol. 3, no. 12, article e3973, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. K. Karwacz, S. Mukherjee, L. Apolonia, et al., “Nonintegrating lentivector vaccines stimulate prolonged T-cell and antibody responses and are effective in tumor therapy,” The Journal of Virology, vol. 83, no. 7, pp. 3094–3103, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. B. Hu, H. Yang, B. Dai, A. Tai, and P. Wang, “Nonintegrating lentiviral vectors can effectively deliver ovalbumin antigen for induction of antitumor immunity,” Human Gene Therapy, vol. 20, no. 12, pp. 1652–1664, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. Z. Michelini, D. R. M. Negri, S. Baroncelli, et al., “Development and use of SIV-based Integrase defective lentiviral vector for immunization,” Vaccine, vol. 27, no. 34, pp. 4622–4629, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. L. Naldini, U. Blomer, P. Gallay, et al., “In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector,” Science, vol. 272, no. 5259, pp. 263–267, 1996. View at Scopus
  22. R. Bona, M. Andreotti, V. Buffa, et al., “Development of a human immunodeficiency virus vector-based, single-cycle assay for evaluation of anti-integrase compounds,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 10, pp. 3407–3417, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. R. Weiss, “The search for human RNA tumor viruses,” in RNA Tumor Viruses, R. Weiss, N. Teich, H. Varmus, and J. Coffin, Eds., pp. 1205–1218, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 2nd edition, 1982.
  24. F. Di Rosa and R. Pabst, “The bone marrow: a nest for migratory memory T cells,” Trends in Immunology, vol. 26, no. 7, pp. 360–366, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. V. Appay, D. F. Nixon, S. M. Donahoe, et al., “HIV-specific CD8+ T cells produce antiviral cytokines but are impaired in cytolytic function,” The Journal of Experimental Medicine, vol. 192, no. 1, pp. 63–75, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. M. B. Banasik and P. B. McCray Jr., “Integrase-defective lentiviral vectors: progress and applications,” Gene Therapy, vol. 17, no. 2, pp. 150–157, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. K. Wanisch and R. J. Yáñez-Muñoz, “Integration-deficient lentiviral vectors: a slow coming of age,” Molecular Therapy, vol. 17, no. 8, pp. 1316–1332, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. V. Appay, P. R. Dunbar, M. Callan, et al., “Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections,” Nature Medicine, vol. 8, no. 4, pp. 379–385, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. A.-K. Roos, F. Eriksson, J. A. Timmons, et al., “Skin electroporation: effects on transgene expression, DNA persistence and local tissue environment,” PLoS ONE, vol. 4, no. 9, article e7226, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus