About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 548280, 12 pages
http://dx.doi.org/10.1155/2010/548280
Review Article

A New Insight into Hepatitis C Vaccine Development

Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 1 Chang-Te Street, Taipei 100, Taiwan

Received 14 December 2009; Revised 25 February 2010; Accepted 5 April 2010

Academic Editor: Zhengguo Xiao

Copyright © 2010 Chun I. Yu and Bor-Luen Chiang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. W. Shepard, L. Finelli, and M. J. Alter, “Global epidemiology of hepatitis C virus infection,” Lancet Infectious Diseases, vol. 5, no. 9, pp. 558–567, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. G.-L. Xia, C.-B. Liu, H.-L. Cao, et al., “Prevalence of hepatitis B and C virus infections in the general Chinese population. Results from a nationwide cross-sectional seroepidemiologic study of hepatitis A, B, C, D, and E virus infections in China, 1992,” International Hepatology Communications, vol. 5, no. 1, pp. 62–73, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Frank, M. K. Mohamed, G. T. Strickland, et al., “The role of parenteral antischistosomal therapy in the spread of hepatitis C virus in Egypt,” Lancet, vol. 355, no. 9207, pp. 887–891, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. M. J. Alter, “Hepatitis C virus infection in the United States,” Journal of Hepatology, vol. 31, no. 1, pp. 88–91, 1999. View at Scopus
  5. G. L. Armstrong, A. Wasley, E. P. Simard, G. M. McQuillan, W. L. Kuhnert, and M. J. Alter, “The prevalence of hepatitis C virus infection in the United States, 1999 through 2002,” Annals of Internal Medicine, vol. 144, no. 10, pp. 705–714, 2006. View at Scopus
  6. M. J. Tong, N. S. El-Farra, A. R. Reikes, and R. L. Co, “Clinical outcomes after transfusion-associated hepatitis C,” New England Journal of Medicine, vol. 332, no. 22, pp. 1463–1466, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. A. M. Di Bisceglie, J. Thompson, N. Smith-Wilkaitis, E. M. Brunt, and B. R. Bacon, “Combination of interferon and ribavirin in chronic hepatitis C: re-treatment of nonresponders to interferon,” Hepatology, vol. 33, no. 3, pp. 704–707, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. M. P. Manns, H. Wedemeyer, and M. Cornberg, “Treating viral hepatitis C: efficacy, side effects, and complications,” Gut, vol. 55, no. 9, pp. 1350–1359, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. S. D. Sullivan, D. M. Jensen, D. E. Bernstein, et al., “Cost-effectiveness of combination peginterferon α-2a and ribavirin compared with interferon α-2b and ribavirin in patients with chronic hepatitis C,” American Journal of Gastroenterology, vol. 99, no. 8, pp. 1490–1496, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. M. P. Manns, J. G. McHutchison, S. C. Gordon, et al., “Peginterferon α-2b plus ribavirin compared with interferon α-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial,” Lancet, vol. 358, no. 9286, pp. 958–965, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. M. W. Fried, M. L. Shiffman, K. R. Reddy, et al., “Peginterferon α-2a plus ribavirin for chronic hepatitis C virus infection,” New England Journal of Medicine, vol. 347, no. 13, pp. 975–982, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. O. V. Nainan, M. J. Alter, D. Kruszon-Moran, et al., “Hepatitis C virus genotypes and viral concentrations in participants of a general population survey in the United States,” Gastroenterology, vol. 131, no. 2, pp. 478–484, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. L. M. Blatt, M. G. Mutchnick, M. J. Tong, et al., “Assessment of hepatitis C virus RNA and genotype from 6807 patients with chronic hepatitis C in the United States,” Journal of Viral Hepatitis, vol. 7, no. 3, pp. 196–202, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Tang and H. Grise, “Cellular and molecular biology of HCV infection and hepatitis,” Clinical Science, vol. 117, no. 2, pp. 49–65, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. P. Simmonds, J. Bukh, C. Combet, et al., “Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes,” Hepatology, vol. 42, no. 4, pp. 962–973, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. J. Bukh, R. H. Miller, and R. H. Purcell, “Genetic heterogeneity of hepatitis C virus: quasispecies and genotypes,” Seminars in Liver Disease, vol. 15, no. 1, pp. 41–63, 1995. View at Scopus
  17. B. D. Lindenbach, M. J. Evans, A. J. Syder, et al., “Complete replication of hepatitis C virus in cell culture,” Science, vol. 309, no. 5734, pp. 623–626, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. E. Scarselli, H. Ansuini, R. Cerino, et al., “The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus,” EMBO Journal, vol. 21, no. 19, pp. 5017–5025, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. M. J. Evans, T. von Hahn, D. M. Tscherne, et al., “Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry,” Nature, vol. 446, no. 7137, pp. 801–805, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. V. Agnello, G. Abel, M. Elfahal, G. B. Knight, and Q.-X. Zhang, “Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 22, pp. 12766–12771, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Germi, J.-M. Crance, D. Garin, et al., “Cellular glycosaminoglycans and low density lipoprotein receptor are involved in hepatitis C virus adsorption,” Journal of Medical Virology, vol. 68, no. 2, pp. 206–215, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. A. Ploss, M. J. Evans, V. A. Gaysinskaya, et al., “Human occludin is a hepatitis C virus entry factor required for infection of mouse cells,” Nature, vol. 457, no. 7231, pp. 882–886, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. M. Yamamoto, S. Sato, H. Hemmi, et al., “Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway,” Science, vol. 301, no. 5633, pp. 640–643, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. M. Yamamoto, S. Sato, K. Mori, et al., “Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-β promoter in the Toll-like receptor signaling,” Journal of Immunology, vol. 169, no. 12, pp. 6668–6672, 2002. View at Scopus
  25. S. E. Doyle, S. A. Vaidya, R. O'Connell, et al., “IRF3 mediates a TLR3/TLR4-specific antiviral gene program,” Immunity, vol. 17, no. 3, pp. 251–263, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Sato, H. Suemori, N. Hata, et al., “Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/β gene induction,” Immunity, vol. 13, no. 4, pp. 539–548, 2000. View at Scopus
  27. K. Li, E. Foy, J. C. Ferreon, et al., “Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 8, pp. 2992–2997, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. J. C. Ferreon, A. C. M. Ferreon, K. Li, and S. M. Lemon, “Molecular determinants of TRIF proteolysis mediated by the hepatitis C virus NS3/4A protease,” Journal of Biological Chemistry, vol. 280, no. 21, pp. 20483–20492, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. E. Meylan, J. Curran, K. Hofmann, et al., “Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus,” Nature, vol. 437, no. 7062, pp. 1167–1172, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. L. L. Lanier, “Evolutionary struggles between NK cells and viruses,” Nature Reviews Immunology, vol. 8, no. 4, pp. 259–268, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. M. Lucas, W. Schachterle, K. Oberle, P. Aichele, and A. Diefenbach, “Dendritic cells prime natural killer cells by trans-presenting interleukin 15,” Immunity, vol. 26, no. 4, pp. 503–517, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. E. F. Castillo, S. W. Stonier, L. Frasca, et al., “Dendritic cells support the in vivo development and maintenance of NK cells via IL-15 trans-presentation,” Journal of Immunology, vol. 183, no. 8, pp. 4948–4956, 2009.
  33. U.-C. Meier, R. E. Owen, E. Taylor, et al., “Shared alterations in NK cell frequency, phenotype, and function in chronic human immunodeficiency virus and hepatitis C virus infections,” Journal of Virology, vol. 79, no. 19, pp. 12365–12374, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. L. Golden-Mason, L. Madrigal-Estebas, E. McGrath, et al., “Altered natural killer cell subset distributions in resolved and persistent hepatitis C virus infection following single source exposure,” Gut, vol. 57, no. 8, pp. 1121–1128, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. B. Bartosch, J. Bukh, J.-C. Meunier, et al., “In vitro assay for neutralizing antibody to hepatitis C virus: evidence for broadly conserved neutralization epitopes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 24, pp. 14199–14204, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. C. Logvinoff, M. E. Major, D. Oldach, et al., “Neutralizing antibody response during acute and chronic hepatitis C virus infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 27, pp. 10149–10154, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. P. Maillard, T. Huby, U. Andreo, M. Moreau, J. Chapman, and A. Budkowska, “The interaction of natural hepatitis C virus with human scavenger receptor SR-BI/Cla1 is mediated by ApoB-containing lipoproteins,” FASEB Journal, vol. 20, no. 6, pp. 735–737, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. F. Helle, A. Goffard, V. Morel, et al., “The neutralizing activity of anti-hepatitis C virus antibodies is modulated by specific glycans on the E2 envelope protein,” Journal of Virology, vol. 81, no. 15, pp. 8101–8111, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. J. M. Timpe, Z. Stamataki, A. Jennings, et al., “Hepatitis C virus cell-cell transmission in hepatoma cells in the presence of neutralizing antibodies,” Hepatology, vol. 47, no. 1, pp. 17–24, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. P. Farci, A. Shimoda, A. Coiana, et al., “The outcome of acute hepatitis C predicted by the evolution of the viral quasispecies,” Science, vol. 288, no. 5464, pp. 339–344, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. T. von Hahn, J. C. Yoon, H. Alter, et al., “Hepatitis C virus continuously escapes from neutralizing antibody and T-cell responses during chronic infection in vivo,” Gastroenterology, vol. 132, no. 2, pp. 667–678, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. P. Farci, A. Shimoda, D. Wong, et al., “Prevention of hepatitis C virus infection in chimpanzees by hyperimmune serum against the hypervariable region 1 of the envelope 2 protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 26, pp. 15394–15399, 1996. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Zhang, L. Zhong, E. B. Struble, et al., “Depletion of interfering antibodies in chronic hepatitis C patients and vaccinated chimpanzees reveals broad cross-genotype neutralizing activity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 18, pp. 7537–7541, 2009.
  44. A. L. Erickson, Y. Kimura, S. Igarashi, et al., “The outcome of hepatitis C virus infection is predicted by escape mutations in epitopes targeted by cytotoxic T lymphocytes,” Immunity, vol. 15, no. 6, pp. 883–895, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Weiner, A. L. Erickson, J. Kansopon, et al., “Persistent hepatitis C virus infection in a chimpanzee is associated with emergence of a cytotoxic T lymphocyte escape variant,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 7, pp. 2755–2759, 1995. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Timm, G. M. Lauer, D. G. Kavanagh, et al., “CD8 epitope escape and reversion in acute HCV infection,” Journal of Experimental Medicine, vol. 200, no. 12, pp. 1593–1604, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. A. L. Cox, T. Mosbruger, Q. Mao, et al., “Cellular immune selection with hepatitis C virus persistence in humans,” Journal of Experimental Medicine, vol. 201, no. 11, pp. 1741–1752, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. I. Tester, S. Smyk-Pearson, P. Wang, et al., “Immune evasion versus recovery after acute hepatitis C virus infection from a shared source,” Journal of Experimental Medicine, vol. 201, no. 11, pp. 1725–1731, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. A. Grakoui, N. H. Shoukry, D. J. Woollard, et al., “HCV persistence and immune evasion in the absence of memory T cell help,” Science, vol. 302, no. 5645, pp. 659–662, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. L. Uebelhoer, J.-H. Han, B. Callendret, et al., “Stable cytotoxic T cell escape mutation in hepatitis C virus is linked to maintenance of viral fitness,” PLoS Pathogens, vol. 4, no. 9, Article ID e1000143, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. S. Knapp, B. J. W. Hennig, A. J. Frodsham, et al., “Interleukin-10 promoter polymorphisms and the outcome of hepatitis C virus infection,” Immunogenetics, vol. 55, no. 6, pp. 362–369, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. A. Mangia, R. Santoro, M. Piattelli, et al., “IL-10 haplotypes as possible predictors of spontaneous clearance of HCV infection,” Cytokine, vol. 25, no. 3, pp. 103–109, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. C. A. Goulding, A. Murphy, G. MacDonald, et al., “The CCR5-Δ32 mutation: impact on disease outcome in individuals with hepatitis C infection from a single source,” Gut, vol. 54, no. 8, pp. 1157–1161, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. A. Mangia, R. Gentile, I. Cascavilla, et al., “HLA class II favors clearance of HCV infection and progression of the chronic liver damage,” Journal of Hepatology, vol. 30, no. 6, pp. 984–989, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Neumann-Haefelin, S. McKiernan, S. Ward, et al., “Dominant influence of an HLA-B27 restricted CD8+ T cell response in mediating HCV clearance and evolution,” Hepatology, vol. 43, no. 3, pp. 563–572, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. D. L. Thomas, C. L. Thio, M. P. Martin, et al., “Genetic variation in IL28B and spontaneous clearance of hepatitis C virus,” Nature, vol. 461, no. 7265, pp. 798–801, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. E. Dazert, C. Neumann-Haefelin, S. Bressanelli, et al., “Loss of viral fitness and cross-recognition by CD8+ T cells limit HCV escape from a protective HLA-B27-restricted human immune response,” Journal of Clinical Investigation, vol. 119, no. 2, pp. 376–386, 2009. View at Scopus
  58. S. Cooper, A. L. Erickson, E. J. Adams, et al., “Analysis of a successful immune response against hepatitis C virus,” Immunity, vol. 10, no. 4, pp. 439–449, 1999. View at Publisher · View at Google Scholar · View at Scopus
  59. N. H. Shoukry, A. Grakoui, M. Houghton, et al., “Memory CD8+ T cells are required for protection from persistent hepatitis C virus infection,” Journal of Experimental Medicine, vol. 197, no. 12, pp. 1645–1655, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. H. Wedemeyer, X.-S. He, M. Nascimbeni, et al., “Impaired effector function of hepatitis C virus-specific CD8+ T cells in chronic hepatitis C virus infection,” Journal of Immunology, vol. 169, no. 6, pp. 3447–3458, 2002. View at Scopus
  61. G. M. Lauer, E. Barnes, M. Lucas, et al., “High resolution analysis of cellular immune responses in resolved and persistent hepatitis C virus infection,” Gastroenterology, vol. 127, no. 3, pp. 924–936, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Urbani, B. Amadei, P. Fisicaro, et al., “Outcome of acute hepatitis C is related to virus-specific CD4 function and maturation of antiviral memory CD8 responses,” Hepatology, vol. 44, no. 1, pp. 126–139, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. D. E. Kaplan, K. Sugimoto, K. Newton, et al., “Discordant role of CD4 T-cell response relative to neutralizing antibody and CD8 T-cell responses in acute hepatitis C,” Gastroenterology, vol. 132, no. 2, pp. 654–666, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. S. Smyk-Pearson, I. A. Tester, J. Klarquist, et al., “Spontaneous recovery in acute human hepatitis C virus infection: functional T-cell thresholds and relative importance of CD4 help,” Journal of Virology, vol. 82, no. 4, pp. 1827–1837, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. N. Semmo, C. L. Day, S. M. Ward, et al., “Preferential loss of IL-2-secreting CD4+ T helper cells in chronic HCV infection,” Hepatology, vol. 41, no. 5, pp. 1019–1028, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. J. Schulze zur Wiesch, G. M. Lauer, C. L. Day, et al., “Broad repertoire of the CD4+ Th cell response in spontaneously controlled hepatitis C virus infection includes dominant and highly promiscuous epitopes,” Journal of Immunology, vol. 175, no. 6, pp. 3603–3613, 2005. View at Scopus
  67. C. L. Day, N. P. Seth, M. Lucas, et al., “Ex vivo analysis of human memory CD4 T cells specific for hepatitis C virus using MHC class II tetramers,” Journal of Clinical Investigation, vol. 112, no. 6, pp. 831–842, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. J.-J. Lasarte, M. Garcia-Granero, A. Lopez, et al., “Cellular immunity to hepatitis C virus core protein and the response to interferon in patients with chronic hepatitis C,” Hepatology, vol. 28, no. 3, pp. 815–822, 1998. View at Scopus
  69. J. M. Barrera, B. Francis, G. Ercilla, et al., “Improved detection of anti-HCV in post-transfusion hepatitis by a third-generation ELISA,” Vox Sanguinis, vol. 68, no. 1, pp. 15–18, 1995. View at Scopus
  70. J.-C. Meunier, R. S. Russell, V. Goossens, et al., “Isolation and characterization of broadly neutralizing human monoclonal antibodies to the E1 glycoprotein of hepatitis C virus,” Journal of Virology, vol. 82, no. 2, pp. 966–973, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. M. Perotti, N. Mancini, R. A. Diotti, et al., “Identification of a broadly cross-reacting and neutralizing human monoclonal antibody directed against the hepatitis C virus E2 protein,” Journal of Virology, vol. 82, no. 2, pp. 1047–1052, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. M. Law, T. Maruyama, J. Lewis, et al., “Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge,” Nature Medicine, vol. 14, no. 1, pp. 25–27, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. W. O. Osburn, B. E. Fisher, K. A. Dowd, et al., “Spontaneous control of primary hepatitis C virus infection and immunity against persistent reinfection,” Gastroenterology, vol. 138, no. 1, pp. 315–324, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. V. Suppiah, M. Moldovan, G. Ahlenstiel, et al., “IL28B is associated with response to chronic hepatitis C interferon-α and ribavirin therapy,” Nature Genetics, vol. 41, no. 10, pp. 1100–1104, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. Y. Tanaka, N. Nishida, M. Sugiyama, et al., “Genome-wide association of IL28B with response to pegylated interferon-α and ribavirin therapy for chronic hepatitis C,” Nature Genetics, vol. 41, no. 10, pp. 1105–1109, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. D. Ge, J. Fellay, A. J. Thompson, et al., “Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance,” Nature, vol. 461, no. 7262, pp. 399–401, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. T. Marcello, A. Grakoui, G. Barba-Spaeth, et al., “Interferons α and λ inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics,” Gastroenterology, vol. 131, no. 6, pp. 1887–1898, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. H. Zhu, M. Butera, D. R. Nelson, and C. Liu, “Novel type I interferon IL-28A suppresses hepatitis C viral RNA replication,” Virology Journal, vol. 2, p. 80, 2005.
  79. A. J. Muir, M. Shiffman, A. Zaman, et al., “A phase 1b dose-ranging study of 4 weeks of PEG-interferon (IFN) lambda (PEG-rIL-29) in combination with ribavirin (RBV) in patients with chronic genotype 1 hepatitis C virus (HCV) infection,” in Proceedings of the 60th Annual Meeting of the American Association for the Study of Liver Diseases, Boston, Mass, USA, October-November 2009.
  80. B. Bartosch, J. Dubuisson, and F.-L. Cosset, “Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes,” Journal of Experimental Medicine, vol. 197, no. 5, pp. 633–642, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. C. S. Klade, H. Wedemeyer, T. Berg, et al., “Therapeutic vaccination of chronic hepatitis C nonresponder patients with the peptide vaccine IC41,” Gastroenterology, vol. 134, no. 5, pp. 1385–1395, 2008. View at Publisher · View at Google Scholar · View at PubMed
  82. S. Yutani, N. Komatsu, S. Shichijo, et al., “Phase I clinical study of a peptide vaccination for hepatitis C virus-infected patients with different human leukocyte antigen-class I-A alleles,” Cancer Science, vol. 100, no. 10, pp. 1935–1942, 2009. View at Publisher · View at Google Scholar · View at PubMed
  83. F. Habersetzer, J.-P. Zarski, V. Leroy, et al., “A novel vectorized HCV therapeutic vaccine (TG4040): results of a phase I study in naive patients chronically infected by HCV,” in Proceedings of the 44th Annual Meeting of the European Association for the Study of the Liver (EASL '09), Copenhagen, Denmark, April 2009.
  84. J. G. McHutchison, E. J. Lawitz, T. D Boyer, et al., “GI-5005 therapeutic vaccine plus PEG-IFN/Ribavirin improves end of treatment response at 48 weeks versus PEG-IFN/Ribavirin in naive genotype 1 chronic HCV patients,” in Proceedings of the 60th Annual Meeting of the American Association for the Study of Liver Disease, Boston, Mass, USA, October-November 2009.
  85. D. Drane, E. Maraskovsky, R. Gibson, et al., “Priming of CD4+ and CD8+ T cell responses using a HCV core ISCOMATRIX vaccine: a phase I study in healthy volunteers,” Human Vaccines, vol. 5, no. 3, pp. 151–157, 2009. View at Publisher · View at Google Scholar
  86. M. M. Sallberg, L. Frelin, H. Diepolder, et al., “A first clinical trial of therapeutic vaccination using naked DNA delivered by in vivo electroporation shows antiviral effects in patients with chronic hepatitis C,” in Proceedings of the 44th Annual Meeting of the European Association for the Study of the Liver, Copenhagen, Denmark, April 2009.
  87. L. Alvarez-Lajonchere, N. H. Shoukry, B. Gra, et al., “Immunogenicity of CIGB-230, a therapeutic DNA vaccine preparation, in HCV-chronically infected individuals in a Phase I clinical trial,” Journal of Viral Hepatitis, vol. 16, no. 3, pp. 156–167, 2009. View at Publisher · View at Google Scholar · View at PubMed
  88. G. Leroux-Roels, A. H. Batens, I. Desombere, et al., “Immunogenicity and tolerability of intradermal administration of an HCV E1-based vaccine candidate in healthy volunteers and patients with resolved or ongoing chronic HCV infection,” Human Vaccines, vol. 1, no. 2, pp. 61–65, 2005.
  89. C. Firbas, B. Jilma, E. Tauber, et al., “Immunogenicity and safety of a novel therapeutic hepatitis C virus (HCV) peptide vaccine: a randomized, placebo controlled trial for dose optimization in 128 healthy subjects,” Vaccine, vol. 24, no. 20, pp. 4343–4353, 2006. View at Publisher · View at Google Scholar · View at PubMed
  90. H. Wedemeyer, E. Schuller, V. Schlaphoff, et al., “Therapeutic vaccine IC41 as late add-on to standard treatment in patients with chronic hepatitis C,” Vaccine, vol. 27, no. 37, pp. 5142–5151, 2009. View at Publisher · View at Google Scholar · View at PubMed
  91. S. Yutani, A. Yamada, K. Yoshida, et al., “Phase I clinical study of a personalized peptide vaccination for patients infected with hepatitis C virus (HCV) 1b who failed to respond to interferon-based therapy,” Vaccine, vol. 25, no. 42, pp. 7429–7435, 2007. View at Publisher · View at Google Scholar · View at PubMed
  92. T. J. Blanchard, A. Alcamí, P. Andrea, and G. L. Smith, “Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implications for use as a human vaccine,” Journal of General Virology, vol. 79, no. 5, pp. 1159–1167, 1998.
  93. A. Dangoor, P. Lorigan, U. Keilholz, et al., “Clinical and immunological responses in metastatic melanoma patients vaccinated with a high-dose poly-epitope vaccine,” Cancer Immunology, Immunotherapy, vol. 59, no. 6, pp. 863–873, 2009. View at Publisher · View at Google Scholar
  94. E. Sandstrom, C. Nilsson, B. Hejdeman, et al., “Broad immunogenicity of a multigene, multiclade HIV-1 DNA vaccine boosted with heterologous HIV-1 recombinant modified vaccinia virus Ankara,” Journal of Infectious Diseases, vol. 198, no. 10, pp. 1482–1490, 2008. View at Publisher · View at Google Scholar · View at PubMed
  95. T. Hawkridge, T. J. Scriba, S. Gelderbloem, et al., “Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in healthy adults in South Africa,” Journal of Infectious Diseases, vol. 198, no. 4, pp. 544–552, 2008. View at Publisher · View at Google Scholar · View at PubMed
  96. R. Harrop, N. Connolly, I. Redchenko, et al., “Vaccination of colorectal cancer patients with modified vaccinia Ankara delivering the tumor antigen 5T4 (TroVax) induces immune responses which correlate with disease control: a phase I/II trial,” Clinical Cancer Research, vol. 12, no. 11, part 1, pp. 3416–3424, 2006. View at Publisher · View at Google Scholar · View at PubMed
  97. L. Gudmundsdotter, C. Nilsson, A. Brave, et al., “Recombinant Modified Vaccinia Ankara (MVA) effectively boosts DNA-primed HIV-specific immune responses in humans despite pre-existing vaccinia immunity,” Vaccine, vol. 27, no. 33, pp. 4468–4474, 2009. View at Publisher · View at Google Scholar · View at PubMed
  98. A. Fournillier, E. Gerossier, A. Evlashev, et al., “An accelerated vaccine schedule with a poly-antigenic hepatitis C virus MVA-based candidate vaccine induces potent, long lasting and in vivo cross-reactive T cell responses,” Vaccine, vol. 25, no. 42, pp. 7339–7353, 2007. View at Publisher · View at Google Scholar · View at PubMed
  99. D. T. O'Hagan, M. Singh, C. Dong, et al., “Cationic microparticles are a potent delivery system for a HCV DNA vaccine,” Vaccine, vol. 23, no. 5, pp. 672–680, 2004. View at Publisher · View at Google Scholar · View at PubMed
  100. A. A. Haller, G. M. Lauer, T. H. King, et al., “Whole recombinant yeast-based immunotherapy induces potent T cell responses targeting HCV NS3 and Core proteins,” Vaccine, vol. 25, no. 8, pp. 1452–1463, 2007. View at Publisher · View at Google Scholar · View at PubMed
  101. F. Habersetzer, T. F. Baumert, and F. Stoll-Keller, “GI-5005, a yeast vector vaccine expressing an NS3-core fusion protein for chronic HCV infection,” Current Opinion in Molecular Therapeutics, vol. 11, no. 4, pp. 456–462, 2009.
  102. L. Frelin, G. Ahlen, M. Alheim, et al., “Codon optimization and mRNA amplification effectively enhances the immunogenecity of the hepatitis C virus nonstructural 3/4A gene,” Gene Therapy, vol. 11, no. 6, pp. 522–533, 2004. View at Publisher · View at Google Scholar · View at PubMed
  103. G. Ahlen, J. Nystrom, I. Pult, L. Frelin, C. Hultgren, and M. Sällberg, “In vivo clearance of hepatitis C virus nonstructural 3/4A-expressing hepatocytes by DNA vaccine-primed cytotoxic T lymphocytes,” Journal of Infectious Diseases, vol. 192, no. 12, pp. 2112–2116, 2005. View at Publisher · View at Google Scholar · View at PubMed
  104. S. Perri, C. E. Greer, K. Thudium, et al., “An alphavirus replicon particle chimera derived from Venezuelan equine encephalitis and Sindbis viruses is a potent gene-based vaccine delivery vector,” Journal of Virology, vol. 77, no. 19, pp. 10394–10403, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. Y. Lin, T. Kwon, J. Polo, et al., “Induction of broad CD4+ and CD8+ T-cell responses and cross-neutralizing antibodies against hepatitis C virus by vaccination with Th1-adjuvanted polypeptides followed by defective alphaviral particles expressing envelope glycoproteins gpE1 and gpE2 and nonstructural proteins 3, 4, and 5,” Journal of Virology, vol. 82, no. 15, pp. 7492–7503, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus