About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 575672, 9 pages
http://dx.doi.org/10.1155/2010/575672
Review Article

Force Transmission between Synergistic Skeletal Muscles through Connective Tissue Linkages

1Research Institute MOVE, Faculty of Human Movement Sciences, VU University, Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands
2Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA

Received 30 November 2009; Accepted 1 February 2010

Academic Editor: Henk L. M. Granzier

Copyright © 2010 Huub Maas and Thomas G. Sandercock. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Trotter, A. Samora, and C. Wofsy, “A morphometric analysis of the muscle-tendon junction,” Anatomical Record, vol. 213, no. 1, pp. 26–32, 1985.
  2. J. L. McKay, T. J. Burkholder, and L. H. Ting, “Biomechanical capabilities influence postural control strategies in the cat hindlimb,” Journal of Biomechanics, vol. 40, no. 10, pp. 2254–2260, 2007. View at Publisher · View at Google Scholar · View at PubMed
  3. S. H. Yeo, M. C. Tresch, and D. K. Pai, “Optimal design of musculoskeletal models using force field data,” in Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '08), pp. 3710–3714, Vancouver, Canada, August 2008.
  4. P. A. Huijing, “Epimuscular myofascial force transmission: a historical review and implications for new research. International society of biomechanics Muybridge award lecture, Taipei, 2007,” Journal of Biomechanics, vol. 42, no. 1, pp. 9–21, 2009. View at Publisher · View at Google Scholar · View at PubMed
  5. D. E. Denny-Brown, “The histological features of striped muscle in relation to its functional activity,” Proceedings of the Royal Society of London. Series B, vol. 104, pp. 371–411, 1929.
  6. T. R. Nichols, “Receptor mechanisms underlying heterogenic reflexes among the triceps surae muscles of the cat,” Journal of Neurophysiology, vol. 81, no. 2, pp. 467–478, 1999.
  7. P. A. Huijing, “Epimuscular myofascial force transmission between antagonistic and synergistic muscles can explain movement limitation in spastic paresis,” Journal of Electromyography and Kinesiology, vol. 17, no. 6, pp. 708–724, 2007. View at Publisher · View at Google Scholar · View at PubMed
  8. P. A. Huijing, H. Maas, and G. C. Baan, “Compartmental fasciotomy and isolating a muscle from neighboring muscles interfere with myofascial force transmission within the rat anterior crural compartment,” Journal of Morphology, vol. 256, no. 3, pp. 306–321, 2003. View at Publisher · View at Google Scholar · View at PubMed
  9. H. Maas, G. C. Baan, and P. A. Huijing, “Intermuscular interaction via myofascial force transmission: effects of tibialis anterior and extensor hallucis longus length on force transmission from rat extensor digitorum longus muscle,” Journal of Biomechanics, vol. 34, no. 7, pp. 927–940, 2001. View at Publisher · View at Google Scholar
  10. P. A. Huijing and G. C. Baan, “Myofascial force transmission causes interaction between adjacent muscles and connective tissue: effects of blunt dissection and compartmental fasciotomy on length force characteristics of rat extensor digitorum longus muscle,” Archives of Physiology and Biochemistry, vol. 109, pp. 97–109, 2001. View at Publisher · View at Google Scholar · View at PubMed
  11. J. M. Rijkelijkhuizen, G. C. Baan, A. de Haan, C. J. de Ruiter, and P. A. Huijing, “Extramuscular myofascial force transmission for in situ rat medial gastrocnemius and plantaris muscles in progressive stages of dissection,” Journal of Experimental Biology, vol. 208, no. 1, pp. 129–140, 2005. View at Publisher · View at Google Scholar · View at PubMed
  12. C. A. Yucesoy and P. A. Huijing, “Substantial effects of epimuscular myofascial force transmission on muscular mechanics have major implications on spastic muscle and remedial surgery,” Journal of Electromyography and Kinesiology, vol. 17, no. 6, pp. 664–679, 2007. View at Publisher · View at Google Scholar · View at PubMed
  13. H. J. M. Meijer, J. M. Rijkelijkhuizen, and P. A. Huijing, “Myofascial force transmission between antagonistic rat lower limb muscles: effects of single muscle or muscle group lengthening,” Journal of Electromyography and Kinesiology, vol. 17, no. 6, pp. 698–707, 2007. View at Publisher · View at Google Scholar · View at PubMed
  14. H. Maas, G. C. Baan, and P. A. Huijing, “Muscle force is determined also by muscle relative position: isolated effects,” Journal of Biomechanics, vol. 37, no. 1, pp. 99–110, 2004. View at Publisher · View at Google Scholar
  15. H. Maas, C. A. Yucesoy, G. C. Baan, and P. A. Huijing, “Implications of muscle relative position as a co-determinant of isometric muscle force: a review and some experimental results,” Journal of Mechanics in Medicine and Biology, vol. 3, pp. 145–168, 2003.
  16. H. Maas, H. J. M. Meijer, and P. A. Huijing, “Intermuscular interaction between synergists in rat originates from both intermuscular and extramuscular myofascial force transmission,” Cells Tissues Organs, vol. 181, no. 1, pp. 38–50, 2005. View at Publisher · View at Google Scholar · View at PubMed
  17. P. A. Huijing and G. C. Baan, “Myofascial force transmission: muscle relative position and length determine agonist and synergist muscle force,” Journal of Applied Physiology, vol. 94, no. 3, pp. 1092–1107, 2003.
  18. B. I. Hyland and V. M. B. Jordan, “Muscle activity during forelimb reaching movements in rats,” Behavioural Brain Research, vol. 85, no. 2, pp. 175–186, 1997. View at Publisher · View at Google Scholar
  19. R. Hennig and T. Lomo, “Firing patterns of motor units in normal rats,” Nature, vol. 314, no. 6007, pp. 164–166, 1985.
  20. H. J. M. Meijer, G. C. Baan, and P. A. Huijing, “Myofascial force transmission is increasingly important at lower forces: firing frequency-related length-force characteristics of rat extensor digitorum longus,” Acta Physiologica, vol. 186, no. 3, pp. 185–195, 2006. View at Publisher · View at Google Scholar · View at PubMed
  21. W. L. Johnson, D. L. Jindrich, R. R. Roy, and V. R. Edgerton, “A three-dimensional model of the rat hindlimb: musculoskeletal geometry and muscle moment arms,” Journal of Biomechanics, vol. 41, no. 3, pp. 610–619, 2008. View at Publisher · View at Google Scholar · View at PubMed
  22. T. J. Burkholder and T. R. Nichols, “Three-dimensional model of the feline hindlimb,” Journal of Morphology, vol. 261, no. 1, pp. 118–129, 2004. View at Publisher · View at Google Scholar · View at PubMed
  23. H. J. M. Meijer, J. M. Rijkelijkhuizen, and P. A. Huijing, “Effects of firing frequency on length-dependent myofascial force transmission between antagonistic and synergistic muscle groups,” European Journal of Applied Physiology, vol. 104, no. 3, pp. 501–513, 2008. View at Publisher · View at Google Scholar · View at PubMed
  24. T. G. Sandercock, “Nonlinear summation of force in cat soleus muscle results primarily from stretch of the common-elastic elements,” Journal of Applied Physiology, vol. 89, no. 6, pp. 2206–2214, 2000.
  25. E. J. Perreault, C. J. Heckman, and T. G. Sandercock, “Three-dimensional moment and stiffness summation for muscles sharing a common tendon,” in Proceedings of the 2nd Joint Engineering in Medicine and Biology, the 24th Annual Conference and the Annual Meeting of the Biomedical Engineering Society (BMES/EMBS '02), vol. 3, pp. 2554–2555, Houston, Tex, USA, October 2002.
  26. T. G. Sandercock and H. Maas, “Force summation between muscles: are muscles independent actuators?” Medicine and Science in Sports and Exercise, vol. 41, no. 1, pp. 184–190, 2009. View at Publisher · View at Google Scholar · View at PubMed
  27. H. Maas, B. I. Prilutsky, T. R. Nichols, and R. J. Gregor, “The effects of self-reinnervation of cat medial and lateral gastrocnemius muscles on hindlimb kinematics in slope walking,” Experimental Brain Research, vol. 181, no. 2, pp. 377–393, 2007. View at Publisher · View at Google Scholar · View at PubMed
  28. H. Maas and T. G. Sandercock, “Are skeletal muscles independent actuators? Force transmission from soleus muscle in the cat,” Journal of Applied Physiology, vol. 104, no. 6, pp. 1557–1567, 2008. View at Publisher · View at Google Scholar · View at PubMed
  29. A. W. English and W. D. Letbetter, “Anatomy and innervation patterns of cat lateral gastrocnemius and plantaris muscles,” American Journal of Anatomy, vol. 164, no. 1, pp. 67–77, 1982.
  30. G. E. Goslow Jr., R. M. Reinking, and D. G. Stuart, “The cat step cycle: hind limb joint angles and muscle lengths during unrestrained locomotion,” Journal of Morphology, vol. 141, no. 1, pp. 1–42, 1973.
  31. Y. Kawakami, Y. Ichinose, and T. Fukunaga, “Architectural and functional features of human triceps surae muscles during contraction,” Journal of Applied Physiology, vol. 85, no. 2, pp. 398–404, 1998.
  32. T. Oda, H. Kanehisa, K. Chino, et al., “In vivo behavior of muscle fascicles and tendinous tissues of human gastrocnemius and soleus muscles during twitch contraction,” Journal of Electromyography and Kinesiology, vol. 17, no. 5, pp. 587–595, 2007. View at Publisher · View at Google Scholar · View at PubMed
  33. J. Bojsen-Moller, S. Schwartz, T. Finni,, K. Kalliokoski, and S. P. Magnusson, “Lateral force transmission between lower leg muscles,” in Proceedings of the 14th Annual Congress of the European College of Sport Science, Oslo, Norway, 2009.
  34. A. Yaman, M. Ledesma-Carbayo, G. C. Baan, P. A. Huijing, C. A. Yucesoy, and C. Ozturk, “MRI assesment of passive muscular-mechanics in vivo using intensity based non-rigid B-spline registration: effects of epimuscular myofascial force transmission,” in Proceedings of the 17th International Society for Magnetic Resonance in Medicine Scientific Meeting & Exhibition, Honolulu, Hawaii, USA, 2009.
  35. J. Diamant, A. Keller, E. Baer, M. Litt, and R. G. Arridge, “Collagen; ultrastructure and its relation to mechanical properties as a function of ageing,” Proceedings of the Royal Society of London. Series B, vol. 180, no. 60, pp. 293–315, 1972.
  36. H. Maas and P. A. Huijing, “Synergistic and antagonistic interactions in the rat forelimb: acute effects of coactivation,” Journal of Applied Physiology, vol. 107, no. 5, pp. 1453–1462, 2009. View at Publisher · View at Google Scholar · View at PubMed
  37. R. L. Lieber, Skeletal Muscle Structure, Function and Plasticity: The Physiological Basis of Rehabilitation, Lippincott Williams and Wilkins, Baltimore, Md, USA, 2nd edition, 2002.
  38. C. M. Pond, “The importance of connective tissue within and between muscles,” The Behavioral and Brain Sciences, vol. 5, p. 562, 1982.
  39. D. E. Ashurst, “The connective tissues of insects,” Annual Review of Entomology, vol. 13, pp. 45–74, 1968.
  40. H. Maas, G. C. Baan, and P. A. Huijing, “Force transmission via myofascial pathways between EDL muscle and other muscles of the rat anterior compartment,” in Proceedings of the International Society of Biomechanics 18th Congress, Zürich, Switzerland, 2001, CD-ROM.
  41. S. F. Street, “Lateral transmission of tension in frog myofibers: a myofibrillar network and transverse cytoskeletal connections are possible transmitters,” Journal of Cellular Physiology, vol. 114, no. 3, pp. 346–364, 1983.
  42. M. Paavola, P. Kannus, T. A. H. Jarvinen, K. Khan, L. Jozsa, and M. Jarvinen, “Current concepts review achilles tendinopathy,” Journal of Bone and Joint Surgery. American, vol. 84, pp. 2062–2076, 2002.
  43. D. T. Kirkendall and W. E. Garrett Jr., “Clinical perspectives regarding eccentric muscle injury,” Clinical Orthopaedics and Related Research, no. 403, pp. S81–S89, 2002.
  44. R. J. Balice-Gordon and W. J. Thompson, “The organization and development of compartimentalized innervation in rat extensor digitorum longus muscle,” Journal of Physiology, vol. 398, pp. 211–231, 1988.
  45. P. A. Huijing, G. C. Baan, and G. T. Rebel, “Non-myotendinous force transmission in rat extensor digitorum longus muscle,” Journal of Experimental Biology, vol. 201, no. 5, pp. 682–691, 1998.
  46. H. Maas, R. T. Jaspers, G. C. Baan, and P. A. Huijing, “Myofascial force transmission between a single muscle head and adjacent tissues: length effects of head III of rat EDL,” Journal of Applied Physiology, vol. 95, no. 5, pp. 2004–2013, 2003.
  47. P. A. Huijing, “Muscular force transmission: a unified, dual or multiple system? A review and some explorative experimental results,” Archives of Physiology and Biochemistry, vol. 107, no. 4, pp. 292–311, 1999.
  48. M. Kääriäinen, T. Järvinen, M. Järvinen, J. Rantanen, and H. Kalimo, “Relation between myofibers and connective tissue during muscle injury repair,” Scandinavian Journal of Medicine and Science in Sports, vol. 10, no. 6, pp. 332–337, 2000.
  49. M. Kääriäinen, J. Kääriäinen, T. L. N. Järvinen, et al., “Integrin and dystrophin associated adhesion protein complexes during regeneration of shearing-type muscle injury,” Neuromuscular Disorders, vol. 10, no. 2, pp. 121–132, 2000. View at Publisher · View at Google Scholar
  50. J. Estavillo, H. Yellin, Y. Sasaki, and E. Eldred, “Observations on the expected decrease in proprioceptive discharge and purported advent of non proprioceptive activity from the chronically tenotomized muscle,” Brain Research, vol. 63, pp. 75–91, 1973.
  51. A. J. Buller and D. M. Lewis, “Some observations on the effects of tenotomy in the rabbit,” Journal of Physiology, vol. 178, pp. 326–342, 1965.
  52. P. G. Nelson, “Functional consequences of tenotomy in hind limb muscles of the cat,” Journal of Physiology, vol. 201, no. 2, pp. 321–333, 1969.
  53. J. Wong, V. Barrass, and N. Maffulli, “Quantitative review of operative and nonoperative management of Achilles tendon ruptures,” American Journal of Sports Medicine, vol. 30, no. 4, pp. 565–575, 2002.
  54. M. J. C. Smeulders and M. Kreulen, “Myofascial force transmission and tendon transfer for patients suffering from spastic paresis: a review and some new observations,” Journal of Electromyography and Kinesiology, vol. 17, no. 6, pp. 644–656, 2007. View at Publisher · View at Google Scholar · View at PubMed
  55. H. Maas and P. A. Huijing, “Muscular force transmission following tendon transfer,” in Fascia Research II, P. A. Huijing, A. P. Hollander, T. W. Findley, and R. Schleip, Eds., p. 104, Elsevier, München, Germany, 2009.