About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 620827, 7 pages
Research Article

Oral Microencapsulated Live Saccharomyces cerevisiae Cells for Use in Renal Failure Uremia: Preparation and In Vivo Analysis

Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Duff Medical Building, 3775 University Street, Montréal, QC, Canada H3A 2B4

Received 9 February 2010; Accepted 21 April 2010

Academic Editor: Ali Khraibi

Copyright © 2010 Razek Coussa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. R. Brady, M. R. Clarkson, and W. Lieberthal, “Acute renal failure,” in Brenner & Rector's the Kidney, B. M. Brenner, Ed., pp. 1215–1292, W. B. Saunders, Philadelphia, Pa, USA, 2004.
  2. J. Coresh, B. C. Astor, T. Greene, G. Eknoyan, and A. S. Levey, “Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey,” American Journal of Kidney Diseases, vol. 41, no. 1, pp. 1–12, 2003. View at Scopus
  3. R. Thadhani, M. Pascual, and J. V. Bonventre, “Acute renal failure,” The New England Journal of Medicine, vol. 334, no. 22, pp. 1448–1460, 1996. View at Scopus
  4. W. Lieberthal and S. K. Nigam, “Acute renal failure. II. Experimental models of acute renal failure: imperfect but indispensable,” American Journal of Physiology, vol. 278, no. 1, pp. F1–F12, 2000. View at Scopus
  5. S. K. Nigam and W. Lieberthal, “Acute renal failure. III. The role of growth factors in the process of renal regeneration and repair,” American Journal of Physiology, vol. 279, no. 1, pp. F3–F11, 2000. View at Scopus
  6. R. W. Schrier and W. Wang, “Acute renal failure and sepsis,” The New England Journal of Medicine, vol. 351, no. 22, pp. 2347–2349, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Charles, M. David, and M. Stacia, “Control of body fluid, electrolyte, and acid−base balance,” in Human Physiology: Foundations and Frontiers, A. Deborah, Ed., pp. 526–527, Times-Mirror College Publications, Sant Louis, Mo, USA, 1990.
  8. H. Asaba, et al., “Plasma middle molecules in asymptomatic and sick uremic patients,” in Middle Molecules in Uremia and Other Diseases, H. Klinkmann, et al., Ed., pp. 137–141, International Society for Artificial Organs, Cleveland, Ohio, USA, 1980.
  9. B. D. Cohen, “Uremic toxins,” in Uremia: An International Conference on Pathogenesis, Diagnosis and Therapy, R. Kulte, B. Geoffrey, and B. C. Benjamin, Eds., pp. 1–11, Thieme, Stuttgart, Germany, 1972.
  10. W. J. Kolff, “Artificial kidney and artificial heart: further considerations,” International Journal of Artificial Organs, vol. 13, no. 7, pp. 404–406, 1990. View at Scopus
  11. R. Esposito, G. Carmelo, and G. Polyhalides, Sorbents and Their Clinical Applications, Academic Press, London, UK, 1980.
  12. W. Drukker, P. M. Parsons, and J. F. Mahar, Replacement of Renal Functions by Dialysis, Martinus Nijhoff, Boston, Mass, USA, 1983.
  13. E. A. Friedman, “Future treatment of renal failure,” in Strategy in Renal Failure, E. A. Friedman, Ed., pp. 521–528, John Wiley & Sons, New York, NY, USA, 1978.
  14. S. Prakash and T. M. S. Chang, “Microencapsulated genetically engineered E. coli DH5 cells for plasma urea and ammonia removal based on : 1. Column bioreactor and 2. Oral administration in uremic rats,” Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, vol. 24, no. 3, pp. 201–218, 1996. View at Scopus
  15. B. Hoppe, G. von Unruh, N. Laube, A. Hesse, and H. Sidhu, “Oxalate degrading bacteria: new treatment option for patients with primary and secondary hyperoxaluria?” Urological Research, vol. 33, no. 5, pp. 372–375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. L. Jones, H. Chen, W. Ouyang, T. Metz, and S. Prakash, “Microencapsulated genetically engineered Lactobacillus plantarum 80 (pCBH1) for bile acid deconjugation and its implication in lowering cholesterol,” Journal of Biomedicine and Biotechnology, vol. 2004, no. 1, pp. 61–69, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Kjellstrand, H. Borges, C. Pru, D. Gardner, and D. Fink, “On the clinical use of microencapsulated zirconium phosphate-urease for the treatment of chronic uremia,” Transactions of the American Society for Artificial Internal Organs, vol. 27, pp. 24–30, 1981. View at Scopus
  18. R. E. Sparks, N. S. Mason, P. M. Meier, W. E. Samuels, M. H. Litt, and O. Lindan, “Binders to remove uremic waste metabolites from the GI tract,” Transactions of the American Society for Artificial Internal Organs, vol. 18, pp. 458–464, 1972. View at Scopus
  19. R. E. Sparks, “Review of gastrointestinal perfusion in the treatment of uremia,” Clinical Nephrology, vol. 11, no. 2, pp. 81–85, 1979. View at Scopus
  20. J. M. Walker, R. L. Jacobson, W. J. Stephen, and D. Rose, “The role of adsorbents in the wearable artificial kidney,” in Artificial Organs, T. Gilchrist, Ed., pp. 137–149, Macmillan Press, London, UK, 1977.
  21. T. Agishi, N. Yamashita, and K. Ota, “Clinical results of direct charcoal hemoperfusion for endogenous and exogenous intoxication,” in Hemoperfusion, Part I, S. Sidemen and T. M. S. Chang, Eds., pp. 255–263, Hemisphere, Washington, DC, USA, 1980.
  22. K. F. Gu and T. M. S. Chang, “Conversion of alpha-ketoglutarate into L-glutamic acid with urea as ammonia source using multienzyme system and NAD immobilized by microencapsulation with artificial cell in bioreactor,” Biotechnology and Bioengineering, vol. 32, pp. 363–368, 1988.
  23. K. F. Gu and T. M. S. Chang, “Conversion of urea or ammonia into essential amino acids, L-leucine, L-valine and L-isoleucine using artificial cells containing an immobilized multienzyme system and dextran-NAD: yeast alcohol dehydrogenase for enzyme recycling,” Journal of Applied Biochemistry and Biotechnology, vol. 12, pp. 227–236, 1991.
  24. M. V. Cattaneo and T. M. S. Chang, “The potential of a microencapsulated urease-zeolite oral sorbent for the removal of urea in uremia,” Transactions of American Society for Artificial Internal Organs, vol. 37, no. 2, pp. 80–87, 1991. View at Scopus
  25. http://jb.asm.org/cgi/content/full/186/9/2520.
  26. T. M. S. Chang, “Semipermeable microcapsules,” Science, vol. 146, no. 3643, pp. 524–525, 1964. View at Scopus
  27. T. M. S. Chang, Semipermeable aqueous microcapsules, Ph.D. thesis, McGill University, Montreal, Canada, 1965.
  28. T. M. Chang, F. C. MacIntosh, and S. G. Mason, “Semipermeable aqueous microcapsules. I. Preparation and properties,” Canadian Journal of Physiology and Pharmacology, vol. 44, no. 1, pp. 115–128, 1966. View at Scopus
  29. L. S. Meriwether and H. M. Kramer, “In vitro reactivity of oxystarch and oxycellulose,” Kidney International, Supplement, no. 7, pp. S259–265, 1976. View at Scopus
  30. S. Prakash and T. M. S. Chang, “Artificial cells and genetically engineered microencapsulated for E. coli cells, for urea and ammonia removal,” Methods in Molecular Biology, vol. 23, pp. 343–357, 1996. View at Scopus
  31. K. Iseki, S. Oshiro, M. Tozawa, C. Iseki, Y. Ikemiya, and S. Takishita, “Significance of hyperuricemia on the early detection of renal failure in a cohort of screened subjects,” Hypertension Research, vol. 24, no. 6, pp. 691–697, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. X. Wu, M. Wakamiya, S. Vaishnav et al., “Hyperuricemia and urate nephropathy in urate oxidase-deficient mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 2, pp. 742–746, 1994. View at Scopus
  33. K. Hirayama and J. Rafter, “The role of lactic acid bacteria in colon cancer prevention: mechanistic considerations,” Antonie van Leeuwenhoek, vol. 76, no. 1–4, pp. 391–394, 1999. View at Scopus
  34. F. Guarner, “Enteric flora in health and disease,” Digestion, vol. 73, pp. 5–12, 2006.