About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 648501, 20 pages
http://dx.doi.org/10.1155/2010/648501
Research Article

Proteomic Profiling of the Dystrophin-Deficient MDX Heart Reveals Drastically Altered Levels of Key Metabolic and Contractile Proteins

1Department of Biology, National University of Ireland, Maynooth, Kildare, Ireland
2Developmental Biology and Molecular Pathology, University of Bielefeld, D33501 Bielefeld, Germany

Received 7 October 2009; Accepted 25 February 2010

Academic Editor: Aikaterini Kontrogianni-Konstantopoulos

Copyright © 2010 Caroline Lewis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Koening, E. P. Hoffman, C. J. Bertelson, A. P. Monaco, C. Feener, and L. M. Kunkel, “Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals,” Cell, vol. 50, no. 3, pp. 509–517, 1987. View at Scopus
  2. E. P. Hoffman, R. H. Brown Jr., and L. M. Kunkel, “Dystrophin: the protein product of the Duchenne muscular dystrophy locus,” Cell, vol. 51, no. 6, pp. 919–928, 1987. View at Scopus
  3. E. Bonilla, C. E. Samitt, A. F. Miranda, et al., “Duchenne muscular dystrophy: deficiency of dystrophin at the muscle cell suface,” Cell, vol. 54, no. 4, pp. 447–452, 1988. View at Scopus
  4. N. Deconinck and B. Dan, “Pathophysiology of Duchenne muscular dystrophy: current hypotheses,” Pediatric Neurology, vol. 36, no. 1, pp. 1–7, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. I. Dalkilic and L. M. Kunkel, “Muscular dystrophies: genes to pathogenesis,” Current Opinion in Genetics and Development, vol. 13, no. 3, pp. 231–238, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Ohlendieck, “Towards an understanding of the dystrophin-glycoprotein complex: linkage between the extracellular matrix and the membrane cytoskeleton in muscle fibers,” European Journal of Cell Biology, vol. 69, no. 1, pp. 1–10, 1996. View at Scopus
  7. J. M. Ervasti, “Dystrophin, its interactions with other proteins, and implications for muscular dystrophy,” Biochimica et Biophysica Acta, vol. 1772, no. 2, pp. 108–117, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. A. H. Ahn and L. M. Kunkel, “The structural and functional diversity of dystrophin,” Nature Genetics, vol. 3, no. 4, pp. 283–291, 1993. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. R. D. Cohn and K. P. Campbell, “Molecular basis of muscular dystrophies,” Muscle & Nerve, vol. 23, no. 10, pp. 1456–1471, 2000. View at Scopus
  10. C. L. Batchelor and S. J. Winder, “Sparks, signals and shock absorbers: how dystrophin loss causes muscular dystrophy,” Trends in Cell Biology, vol. 16, no. 4, pp. 198–205, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. J. L. Anderson, S. I. Head, C. Rae, and J. W. Morley, “Brain function in Duchenne muscular dystrophy,” Brain, vol. 125, no. 1, pp. 4–13, 2002. View at Scopus
  12. D. M. Connuck, L. A. Sleeper, S. D. Colan, et al., “Characteristics and outcomes of cardiomyopathy in children with Duchenne or Becker muscular dystrophy: a comparative study from the Pediatric Cardiomyopathy Registry,” American Heart Journal, vol. 155, no. 6, pp. 998–1005, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. J. Finsterer and C. Stollberger, “The heart in human dystrophinopathies,” Cardiology, vol. 99, no. 1, pp. 1–19, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. G. F. Cox and L. M. Kunkel, “Dystrophies and heart disease,” Current Opinion in Cardiology, vol. 12, no. 3, pp. 329–343, 1997. View at Scopus
  15. F. Muntoni, “Cardiomyopathy in muscular dystrophies,” Current Opinion in Neurology, vol. 16, no. 5, pp. 577–583, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Sultan and M. Fayaz, “Prevalence of cardiomyopathy in Duchenne and Becker's muscular dystrophy,” Journal of Ayub Medical College, Abbottabad, vol. 20, no. 2, pp. 7–13, 2008. View at Scopus
  17. E. M. McNally, “New approaches in the therapy of cardiomyopathy in muscular dystrophy,” Annual Review of Medicine, vol. 58, no. 1, pp. 75–88, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. D. Duan, “Challenges and opportunities in dystrophin-deficient cardiomyopathy gene therapy,” Human Molecular Genetics, vol. 15, no. 2, pp. R253–R261, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. D. W. Townsend, S. Yasuda, and J. Metzger, “Cardiomyopathy of Duchenne muscular dystrophy: pathogenesis and prospect of membrane sealants as a new therapeutic approach,” Expert Review of Cardiovascular Therapy, vol. 5, no. 1, pp. 99–109, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. M. D. Grounds, H. G. Radley, G. S. Lynch, K. Nagaraju, and A. De Luca, “Towards developing standard operating procedures for pre-clinical testing in the MDX mouse model of Duchenne muscular dystrophy,” Neurobiology of Disease, vol. 31, no. 1, pp. 1–19, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. P. Sicinski, Y. Geng, A. S. Ryder-Cook, E. A. Barnard, M. G. Darlison, and P. J. Barnard, “The molecular basis of muscular dystrophy in the MDX mouse: a point mutation,” Science, vol. 244, no. 4912, pp. 1578–1580, 1989. View at Scopus
  22. L. R. Bridges, “The association of cardiac muscle necrosis and inflammation with the degenerative and persistent myopathy of MDX mice,” Journal of the Neurological Sciences, vol. 72, no. 2-3, pp. 147–157, 1986. View at Scopus
  23. V. Chu, J. M. Otero, O. Lopez, et al., “Electrocardiographic findings in MDX mice: a cardiac phenotype of Duchenne muscular dystrophy,” Muscle and Nerve, vol. 26, no. 4, pp. 513–519, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. J. G. Quinlan, H. S. Hahn, B. L. Wong, J. N. Lorenz, A. S. Wenisch, and L. S. Levin, “Evolution of the MDX mouse cardiomyopathy: physiological and morphological findings,” Neuromuscular Disorders, vol. 14, no. 8-9, pp. 491–496, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. M. Khairallah, R. Khairallah, M. E. Young, J. R. B. Dyck, B. J. Petrof, and C. Des Rosiers, “Metabolic and signaling alterations in dystrophin-deficient hearts precede overt cardiomyopathy,” Journal of Molecular and Cellular Cardiology, vol. 43, no. 2, pp. 119–129, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. Y. Yue, Z. Li, S. Q. Harper, R. L. Davisson, J. S. Chamberlain, and D. Duan, “Microdystrophin gene therapy of cardiomyopathy restores dystrophin-glycoprotein complex and improves sarcolemma integrity in the MDX mouse heart,” Circulation, vol. 108, no. 13, pp. 1626–1632, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. M. Wehling-Henricks, M. C. Jordan, K. P. Roos, B. Deng, and J. G. Tidball, “Cardiomyopathy in dystrophin-deficient hearts is prevented by expression of a neuronal nitric oxide synthase transgene in the myocardium,” Human Molecular Genetics, vol. 14, no. 14, pp. 1921–1933, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. B. Wu, H. M. Moulton, P. L. Iversen, et al., “Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 39, pp. 14814–14819, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. G. M. Buyse, G. Van der Mieren, M. Erb, et al., “Long-term blinded placebo-controlled study of SNT-MC17/idebenone in the dystrophin deficient MDX mouse: cardiac protection and improved exercise performance,” European Heart Journal, vol. 30, no. 1, pp. 116–124, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. J. L. Sapp, J. Bobet, and S. E. Howlett, “Contractile properties of myocardium are altered in dystrophin-deficient MDX mice,” Journal of the Neurological Sciences, vol. 142, no. 1-2, pp. 17–24, 1996. View at Publisher · View at Google Scholar · View at Scopus
  31. B. L. Bia, P. J. Cassidy, M. E. Young, et al., “Decreased myocardial nNOS, increased iNOS and abnormal ECGs in mouse models of duchenne muscular dystrophy,” Journal of Molecular and Cellular Cardiology, vol. 31, no. 10, pp. 1857–1862, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. J. Lohan, K. Culligan, and K. Ohlendieck, “Deficiency in cardiac dystrophin affects the abundance of the α-/β-dystroglycan complex,” Journal of Biomedicine and Biotechnology, vol. 2005, no. 1, pp. 28–36, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. J. Lohan and K. Ohlendieck, “Drastic reduction in the luminal Ca2+-binding proteins calsequestrin and sarcalumenin in dystrophin-deficient cardiac muscle,” Biochimica et Biophysica Acta, vol. 1689, no. 3, pp. 252–258, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. M. Fanchaouy, E. Polakova, C. Jung, J. Ogrodnik, N. Shirokova, and E. Niggli, “Pathways of abnormal stress-induced Ca2+ influx into dystrophic MDX cardiomyocytes,” Cell Calcium, vol. 46, no. 2, pp. 114–121, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. J. P. Lefaucheur, C. Pastoret, and A. Sebille, “Phenotype of dystrophinopathy in old MDX mice,” Anatomical Record, vol. 242, no. 1, pp. 70–76, 1995. View at Scopus
  36. A. Nakamura, K. Yoshida, S. Takeda, N. Dohi, and S.-I. Ikeda, “Progression of dystrophic features and activation of mitogen-activated protein kinases and calcineurin by physical exercise, in hearts of MDX mice,” FEBS Letters, vol. 520, no. 1–3, pp. 18–24, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. C. F. Spurney, S. Knoblach, E. E. Pistilli, K. Nagaraju, G. R. Martin, and E. P. Hoffman, “Dystrophin-deficient cardiomyopathy in mouse: expression of Nox4 and Lox are associated with fibrosis and altered functional parameters in the heart,” Neuromuscular Disorders, vol. 18, no. 5, pp. 371–381, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. C. L. de Hoog and M. Mann, “Proteomics,” Annual Review of Genomics and Human. Genetics, vol. 5, no. 1, pp. 267–293, 2004.
  39. S. Viswanathan, M. Unlu, and J. S. Minden, “Two-dimensional difference gel electrophoresis,” Nature Protocols, vol. 1, no. 3, pp. 1351–1358, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. R. Marouga, S. David, and E. Hawkins, “The development of the DIGE system: 2D fluorescence difference gel analysis technology,” Analytical and Bioanalytical Chemistry, vol. 382, no. 3, pp. 669–678, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. P. Doran, J. Gannon, K. O'Connell, and K. Ohlendieck, “Proteomic profiling of animal models mimicking skeletal muscle disorders,” Proteomics, vol. 1, no. 9, pp. 1169–1184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Ge, M. P. Molloy, J. S. Chamberlain, and P. C. Andrews, “Proteomic analysis of MDX skeletal muscle: great reduction of adenylate kinase 1 expression and enzymatic activity,” Proteomics, vol. 3, no. 10, pp. 1895–1903, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. P. Doran, P. Dowling, J. Lohan, K. McDonnell, S. Poetsch, and K. Ohlendieck, “Subproteomics analysis of Ca2+-binding proteins demonstrates decreased calsequestrin expression in dystrophic mouse skeletal muscle,” European Journal of Biochemistry, vol. 271, no. 19, pp. 3943–3952, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. P. Doran, P. Dowling, P. Donoghue, M. Buffini, and K. Ohlendieck, “Reduced expression of regucalcin in young and aged MDX diaphragm indicates abnormal cytosolic calcium handling in dystrophin-deficient muscle,” Biochimica et Biophysica Acta, vol. 1764, no. 4, pp. 773–785, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. P. Doran, G. Martin, P. Dowling, H. Jockusch, and K. Ohlendieck, “Proteome analysis of the dystrophin-deficient MDX diaphragm reveals a drastic increase in the heat shock protein cvHSP,” Proteomics, vol. 6, no. 16, pp. 4610–4621, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. M. K. Gulston, D. V. Rubtsov, H. J. Atherton, et al., “A combined metabolomic and proteomic investigation of the effects of a failure to express dystrophin in the mouse heart,” Journal of Proteome Research, vol. 7, no. 5, pp. 2069–2077, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Scopus
  48. N. A. Karp and K. S. Lilley, “Maximising sensitivity for detecting changes in protein expression: experimental design using minimal CyDyes,” Proteomics, vol. 5, no. 12, pp. 3105–3115, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. P. Doran, K. O'Connell, J. Gannon, M. Kavanagh, and K. Ohlendieck, “Opposite pathobiochemical fate of pyruvate kinase and adenylate kinase in aged rat skeletal muscle as revealed by proteomic DIGE analysis,” Proteomics, vol. 8, no. 2, pp. 364–377, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. T. Rabilloud, J.-M. Strub, S. Luche, A. van Dorsselaer, and J. Lunardi, “A comparison between Sypro Ruby and ruthenium II tris (bathophenanthroline disulfonate) as fluorescent stains for protein detection in gels,” Proteomics, vol. 1, no. 5, pp. 699–704, 2001. View at Scopus
  51. A. Shevchenko, H. Tomas, J. Havlis, J. V. Olsen, and M. Mann, “In-gel digestion for mass spectrometric characterization of proteins and proteomes,” Nature Protocols, vol. 1, no. 6, pp. 2856–2860, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. J. Gannon, P. Doran, A. Kirwan, and K. Ohlendieck, “Drastic increase of myosin light chain MLC-2 in senescent skeletal muscle indicates fast-to-slow fibre transition in sarcopenia of old age,” European Journal of Cell Biology, vol. 88, no. 11, pp. 685–700, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. M. Poot, Y.-Z. Zhang, J. A. Kraemer, et al., “Analysis of mitochondrial morphology and function with novel fixable fluorescent stains,” Journal of Histochemistry and Cytochemistry, vol. 44, no. 12, pp. 1363–1372, 1996. View at Scopus
  54. W. Pendergrass, N. Wolf, and M. Pool, “Efficacy of MitoTracker Green and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues,” Cytometry A, vol. 61, no. 2, pp. 162–169, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. B. Chazotte, “Labeling mitochondria with fluorescent dyes for imaging,” Cold Spring Harbor Protocols, vol. 4, no. 6, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. W. Urfer, M. Grzegorczyk, and K. Jung, “Statistics for proteomics: a review of tools for analyzing experimental data,” Proteomics, vol. 6, no. 2, supplement, pp. 48–55, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. K. Raddatz, D. Albrecht, F. Hochgraefe, M. Hecker, and M. Gotthardt, “A proteome map of murine heart and skeletal muscle,” Proteomics, vol. 8, no. 9, pp. 1885–1897, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. J. A. Westbrook, J. X. Wheeler, R. Wait, S. Y. Welson, and M. J. Dunn, “The human heart proteome: two-dimensional maps using narrow-range immobilised pH gradients,” Electrophoresis, vol. 27, no. 8, pp. 1547–1555, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. E. McGregor and M. J. Dunn, “Proteomics of the heart: unraveling disease,” Circulation Research, vol. 98, no. 3, pp. 309–321, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. P. Doran, S. D. Wilton, S. Fletcher, and K. Ohlendieck, “Proteomic profiling of antisense-induced exon skipping reveals reversal of pathobiochemical abnormalities in dystrophic MDX diaphragm,” Proteomics, vol. 9, no. 3, pp. 671–685, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. R. Malhotra and P. K. Mason, “Lamin A/C deficiency as a cause of familial dilated cardiomyopathy,” Current Opinion in Cardiology, vol. 24, no. 3, pp. 203–208, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. N. Kimura, N. Shimada, M. Fukuda, et al., “Regulation of cellular functions by nucleoside diphosphate kinases in mammals,” Journal of Bioenergetics and Biomembranes, vol. 32, no. 3, pp. 309–315, 2000. View at Publisher · View at Google Scholar · View at Scopus
  63. U. Braun, K. Paju, M. Eimre, et al., “Lack of dystrophin is associated with altered integration of the mitochondria and ATPases in slow-twitch muscle cells of MDX mice,” Biochimica et Biophysica Acta, vol. 1505, no. 2-3, pp. 258–270, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. N. Nagy, G. Malik, A. B. Fisher, and D. K. Das, “Targeted disruption of peroxiredoxin 6 gene renders the heart vulnerable to ischemia-reperfusion injury,” American Journal of Physiology, vol. 291, no. 6, pp. H2636–H2640, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. M. O. Boluyt, J. L. Brevick, D. S. Rogers, M. J. Randall, A. F. Scalia, and Z. B. Li, “Changes in the rat heart proteome induced by exercise training: increased abundance of heat shock protein hsp20,” Proteomics, vol. 6, no. 10, pp. 3154–3169, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. E. A. Fisher, L. R. Lapierre, R. D. Junkins, and R. S. McLeod, “The AAA-ATPase p97 facilitates degradation of apolipoprotein B by the ubiquitin-proteasome pathway,” Journal of Lipid Research, vol. 49, no. 10, pp. 2149–2160, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. D. Szczesna, “Regulatory light chains of striated muscle myosin. Structure, function and malfunction,” Current Drug Targets—Cardiovascular & Haematological Disorders, vol. 3, no. 2, pp. 187–197, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. N. Frey, J. A. Richardson, and E. N. Olson, “Calsarcins, a novel family of sarcomeric calcineurin-binding proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 26, pp. 14632–14637, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. H. Lemieux and C. L. Hoppel, “Mitochondria in the human heart,” Journal of Bioenergetics and Biomembranes, vol. 41, no. 2, pp. 99–106, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. A. M. Distler, J. Kerner, and C. L. Hoppel, “Proteomics of mitochondrial inner and outer membranes,” Proteomics, vol. 8, no. 19, pp. 4066–4082, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. M. Y. White, A. V. G. Edwards, S. J. Cordwell, and J. E. Van Eyk, “Mitochondria: a mirror into cellular dysfunction in heart disease,” Proteomics, vol. 2, no. 6, pp. 845–861, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. W. Zhang, M. ten Hove, J. E. Schneider, et al., “Abnormal cardiac morphology, function and energy metabolism in the dystrophic MDX mouse: an MRI and MRS study,” Journal of Molecular and Cellular Cardiology, vol. 45, no. 6, pp. 754–760, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. M. A. Swanson, R. J. Usselman, F. E. Frerman, G. R. Eaton, and S. S. Eaton, “The iron-sulfur cluster of electron transfer flavoprotein-ubiquinone oxidoreductase is the electron acceptor for electron transfer flavoprotein,” Biochemistry, vol. 47, no. 34, pp. 8894–8901, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. X. H. Liu, L. J. Qian, J. B. Gong, J. Shen, X. M. Zhang, and X. H. Qian, “Proteomic analysis of mitochondrial proteins in cardiomyocytes from chronic stressed rat,” Proteomics, vol. 4, no. 10, pp. 3167–3176, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. V. De Pinto, S. Reina, F. Guarino, and A. Messina, “Structure of the voltage dependent anion channel: state of the art,” Journal of Bioenergetics and Biomembranes, vol. 40, no. 3, pp. 139–147, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus