About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 683485, 10 pages
http://dx.doi.org/10.1155/2010/683485
Review Article

Arginase in Parasitic Infections: Macrophage Activation, Immunosuppression, and Intracellular Signals

Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina

Received 31 July 2009; Accepted 30 September 2009

Academic Editor: Luis I. Terrazas

Copyright © 2010 Cinthia C. Stempin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Stein, S. Keshav, N. Harris, and S. Gordon, “Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation,” Journal of Experimental Medicine, vol. 176, no. 1, pp. 287–292, 1992. View at Publisher · View at Google Scholar · View at Scopus
  2. D. M. Mosser, “The many faces of macrophage activation,” Journal of Leukocyte Biology, vol. 73, no. 2, pp. 209–212, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Nathan, “Mechanisms and modulation of macrophage activation,” Behring Institut Mitteilungen, no. 88, pp. 200–207, 1991. View at Scopus
  4. D. K. Dalton, S. Pitts-Meek, S. Keshav, I. S. Figari, A. Bradley, and T. A. Stewart, “Multiple defects of immune cell function in mice with disrupted interferon-γ genes,” Science, vol. 259, no. 5102, pp. 1739–1742, 1993. View at Scopus
  5. S. Gordon, “Alternative activation of macrophages,” Nature Reviews Immunology, vol. 3, no. 1, pp. 23–35, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. F. S. Sutterwala, G. J. Noel, P. Salgame, and D. M. Mosser, “Reversal of proinflammatory responses by ligating the macrophage Fcγ receptor type I,” Journal of Experimental Medicine, vol. 188, no. 1, pp. 217–222, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. C. F. Anderson and D. M. Mosser, “Cutting edge: biasing immune responses by directing antigen to macrophage Fcγ receptors,” The Journal of Immunology, vol. 168, no. 8, pp. 3697–3701, 2002. View at Scopus
  8. S. Goerdt and C. E. Orfanos, “Other functions, other genes: alternative activation of antigen-presenting cells,” Immunity, vol. 10, no. 2, pp. 137–142, 1999. View at Scopus
  9. A. Mantovani, S. Sozzani, M. Locati, P. Allavena, and A. Sica, “Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes,” Trends in Immunology, vol. 23, no. 11, pp. 549–555, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. F. O. Martinez, L. Helming, and S. Gordon, “Alternative activation of macrophages: an immunologic functional perspective,” Annual Review of Immunology, vol. 27, pp. 451–483, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. F. O. Martinez, A. Sica, A. Mantovani, and M. Locati, “Macrophage activation and polarization,” Frontiers in Bioscience, vol. 13, no. 2, pp. 453–461, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. D. M. Mosser and J. P. Edwards, “Exploring the full spectrum of macrophage activation,” Nature Reviews Immunology, vol. 8, no. 12, pp. 958–969, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. R. D. Stout, C. Jiang, B. Matta, I. Tietzel, S. K. Watkins, and J. Suttles, “Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences,” The Journal of Immunology, vol. 175, no. 1, pp. 342–349, 2005. View at Scopus
  14. K. J. Mylonas, M. G. Nair, L. Prieto-Lafuente, D. Paape, and J. E. Allen, “Alternatively activated macrophages elicited by helminth infection can be reprogrammed to enable microbial killing,” The Journal of Immunology, vol. 182, no. 5, pp. 3084–3094, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Bogdan, “Nitric oxide and the immune response,” Nature Immunology, vol. 2, no. 10, pp. 907–916, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. J. MacMicking, Q.-W. Xie, and C. Nathan, “Nitric oxide and macrophage function,” Annual Review of Immunology, vol. 15, pp. 323–350, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Modolell, I. M. Corraliza, F. Link, G. Soler, and K. Eichmann, “Reciprocal regulation of the nitric oxide synthase-arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines,” European Journal of Immunology, vol. 25, no. 4, pp. 1101–1104, 1995. View at Scopus
  18. P. Kropf, M. A. Freudenberg, M. Modolell, et al., “Toll-like receptor 4 contributes to efficient control of infection with the protozoan parasite Leishmania major,” Infection and Immunity, vol. 72, no. 4, pp. 1920–1928, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Peluffo, L. Piacenza, F. Irigoín, M. N. Alvarez, and R. Radi, “L-arginine metabolism during interaction of Trypanosoma cruzi with host cells,” Trends in Parasitology, vol. 20, no. 8, pp. 363–369, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Plebanski and A. V. S. Hill, “The immunology of malaria infection,” Current Opinion in Immunology, vol. 12, no. 4, pp. 437–441, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Walther, J. Woodruff, F. Edele, et al., “Innate immune responses to human malaria: heterogeneous cytokine responses to blood-stage Plasmodium falciparum correlate with parasitological and clinical outcomes,” The Journal of Immunology, vol. 177, no. 8, pp. 5736–5745, 2006. View at Scopus
  22. W. Noël, Gh. Hassanzadeh, G. Raes, et al., “Infection stage-dependent modulation of macrophage activation in Trypanosoma congolense-resistant and -susceptible mice,” Infection and Immunity, vol. 70, no. 11, pp. 6180–6187, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. F. M. Omer, J. B. de Souza, and E. M. Riley, “Differential induction of TGF-β regulates proinflammatory cytokine production and determines the outcome of lethal and nonlethal Plasmodium yoelii infections,” The Journal of Immunology, vol. 171, no. 10, pp. 5430–5436, 2003. View at Scopus
  24. M. Munder, K. Eichmann, and M. Modolell, “Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype,” The Journal of Immunology, vol. 160, no. 11, pp. 5347–5354, 1998. View at Scopus
  25. M. Hesse, M. Modolell, A. C. La Flamme, et al., “Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism,” The Journal of Immunology, vol. 167, no. 11, pp. 6533–6544, 2001. View at Scopus
  26. C. G. Freire-De-Lima, D. O. Nascimento, M. B. P. Soares, et al., “Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages,” Nature, vol. 403, no. 6766, pp. 199–203, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Mues, D. Langer, G. Zwadlo, and C. Sorg, “Phenotypic characterization of macrophages in human term placenta,” Immunology, vol. 67, no. 3, pp. 303–307, 1989. View at Scopus
  28. P. Kropf, D. Baud, S. E. Marshall, et al., “Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy,” European Journal of Immunology, vol. 37, no. 4, pp. 935–945, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Djemadji-Oudjiel, S. Goerdt, V. Kodelja, M. Schmuth, and C. E. Orfanos, “Immunohistochemical identification of type II alternatively activated dendritic macrophages (RM 3/1+++, MS-1±, 25F9) in psoriatic dermis,” Archives of Dermatological Research, vol. 288, no. 12, pp. 757–764, 1996. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Goerdt, R. Bhardwaj, and C. Sorg, “Inducible expression of MS-1 high-molecular-weight protein by endothelial cells of continuous origin and by dendritic cells/macrophages in vivo and in vitro,” American Journal of Pathology, vol. 142, no. 5, pp. 1409–1422, 1993. View at Scopus
  31. W. Noël, G. Raes, G. H. Ghassabeh, P. De Baetselier, and A. Beschin, “Alternatively activated macrophages during parasite infections,” Trends in Parasitology, vol. 20, no. 3, pp. 126–133, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Raes, A. Beschin, G. H. Ghassabeh, and P. De Baetselier, “Alternatively activated macrophages in protozoan infections,” Current Opinion in Immunology, vol. 19, no. 4, pp. 454–459, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Brys, A. Beschin, G. Raes, et al., “Reactive oxygen species and 12/15-lipoxygenase contribute to the antiproliferative capacity of alternatively activated myeloid cells elicited during helminth infection,” The Journal of Immunology, vol. 174, no. 10, pp. 6095–6104, 2005. View at Scopus
  34. J. L. Reyes and L. I. Terrazas, “The divergent roles of alternatively activated macrophages in helminthic infections,” Parasite Immunology, vol. 29, no. 12, pp. 609–619, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Rodríguez-Sosa, A. R. Satoskar, R. Calderón, et al., “Chronic helminth infection induces alternatively activated macrophages expressing high levels of CCR5 with low interleukin-12 production and Th2-biasing ability,” Infection and Immunity, vol. 70, no. 7, pp. 3656–3664, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. L. I. Terrazas, D. Montero, C. A. Terrazas, J. L. Reyes, and M. Rodríguez-Sosa, “Role of the programmed Death-1 pathway in the suppressive activity of alternatively activated macrophages in experimental cysticercosis,” International Journal for Parasitology, vol. 35, no. 13, pp. 1349–1358, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Loke, A. S. MacDonald, A. Robb, R. M. Maizels, and J. E. Allen, “Alternatively activated macrophages induced by nematode infection inhibit proliferation via cell-to-cell contact,” European Journal of Immunology, vol. 30, no. 9, pp. 2669–2678, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Dissanayake, N. Khan, A. Shahin, S. Wijesinghe, and M. Lukic, “Induction of immunoglobulin G1, interleukin-6 and interleukin-10 by Taenia crassiceps metacestode carbohydrates,” Immunology, vol. 107, no. 4, pp. 411–419, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Rodríguez-Sosa, I. Rivera-Montoya, A. Espinoza, et al., “Acute cysticercosis favours rapid and more severe lesions caused by Leishmania major and Leishmania mexicana infection, a role for alternatively activated macrophages,” Cellular Immunology, vol. 242, no. 2, pp. 61–71, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. L. R. Brunet, M. Beall, D. W. Dunne, and E. J. Pearce, “Nitric oxide and the Th2 response combine to prevent severe hepatic damage during Schistosoma mansoni infection,” The Journal of Immunology, vol. 163, no. 9, pp. 4976–4984, 1999. View at Scopus
  41. L. R. Brunet, F. D. Finkelman, A. W. Cheever, M. A. Kopf, and E. J. Pearce, “IL-4 protects against TNF-α-mediated cachexia and death during acute schistosomiasis,” The Journal of Immunology, vol. 159, no. 2, pp. 777–785, 1997. View at Scopus
  42. E. J. Pearce and A. S. MacDonald, “The immunobiology of schistosomiasis,” Nature Reviews Immunology, vol. 2, no. 7, pp. 499–511, 2002. View at Scopus
  43. T. A. Wynn, R. W. Thompson, A. W. Cheever, and M. M. Mentink-Kane, “Immunopathogenesis of schistosomiasis,” Immunological Reviews, vol. 201, pp. 156–167, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. O. M. S. Abdallahi, H. Bensalem, R. Augier, M. Daigana, M. De Reggi, and B. Gharib, “Arginase expression in peritoneal macrophages and increase in circulating polyamine levels in mice infected with Schistosoma mansoni,” Cellular and Molecular Life Sciences, vol. 58, no. 9, pp. 1350–1357, 2001. View at Scopus
  45. D. R. Herbert, C. Hölscher, M. Mohrs, et al., “Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology,” Immunity, vol. 20, no. 5, pp. 623–635, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. J. T. Pesce, T. R. Ramalingam, M. M. Mentink-Kane, et al., “Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis,” PLoS Pathogens, vol. 5, no. 4, Article ID e1000371, 15 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. M. G. Nair, Y. Du, J. G. Perrigoue, et al., “Alternatively activated macrophage-derived RELM-α is a negative regulator of type 2 inflammation in the lung,” Journal of Experimental Medicine, vol. 206, no. 4, pp. 937–952, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. R. M. Anthony, J. F. Urban, F. Alem, et al., “Memory TH2 cells induce alternatively activated macrophages to mediate protection against nematode parasites,” Nature Medicine, vol. 12, no. 8, pp. 955–960, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Zhao, J. McDermott, J. F. Urban Jr., et al., “Dependence of IL-4, IL-13, and nematode-induced alterations in murine small intestinal smooth muscle contractility on Stat6 and enteric nerves,” The Journal of Immunology, vol. 171, no. 2, pp. 948–954, 2003. View at Scopus
  50. T. Shea-Donohue, C. Sullivan, F. D. Finkelman, et al., “The role of IL-4 in Heligmosomoides polygyrus-induced alterations in murine intestinal epithelial cell function,” The Journal of Immunology, vol. 167, no. 4, pp. 2234–2239, 2001. View at Scopus
  51. A. Zhao, J. F. Urban Jr., R. M. Anthony, et al., “Th2 cytokine-induced alterations in intestinal smooth muscle function depend on alternatively activated macrophages,” Gastroenterology, vol. 135, no. 1, pp. 217–225, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. P. Baetselier, B. Namangala, W. Noël, L. Brys, E. Pays, and A. Beschin, “Alternative versus classical macrophage activation during experimental African trypanosomosis,” International Journal for Parasitology, vol. 31, no. 5-6, pp. 575–587, 2001. View at Scopus
  53. T. Scharton-Kersten, L. C. C. Afonso, M. Wysocka, G. Trinchieri, and P. Scott, “IL-12 is required for natural killer cell activation and subsequent T helper 1 cell development in experimental Leishmaniasis,” The Journal of Immunology, vol. 154, no. 10, pp. 5320–5330, 1995. View at Scopus
  54. V. Iniesta, J. Carcelén, I. Molano, et al., “Arginase I induction during Leishmania major infection mediates the development of disease,” Infection and Immunity, vol. 73, no. 9, pp. 6085–6090, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Kropf, J. M. Fuentes, E. Fähnrich, et al., “Arginase and polyamine synthesis are key factors in the regulation of experimental leishmaniasis in vivo,” The FASEB Journal, vol. 19, no. 8, pp. 1000–1002, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. V. Iniesta, L. C. Gómez-Nieto, and I. Corraliza, “The inhibition of arginase by Nω-hydroxy-L-arginine controls the growth of Leishmania inside macrophages,” Journal of Experimental Medicine, vol. 193, no. 6, pp. 777–783, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Hëlscher, B. Arendse, A. Schwegmann, E. Myburgh, and F. Brombacher, “Impairment of alternative macrophage activation delays cutaneous leishmaniasis in nonhealing BALB/c mice,” The Journal of Immunology, vol. 176, no. 2, pp. 1115–1121, 2006. View at Scopus
  58. V. Michailowsky, N. M. Silva, C. D. Rocha, L. Q. Vieira, J. Lannes-Vieira, and R. T. Gazzinelli, “Pivotal role of interleukin-12 and interferon-γ axis in controlling tissue parasitism and inflammation in the heart and central nervous system during Trypanosoma cruzi infection,” American Journal of Pathology, vol. 159, no. 5, pp. 1723–1733, 2001. View at Scopus
  59. M. M. Rodrigues, M. Ribeiräo, and S. B. Boscardin, “CD4 Th1 but not Th2 clones efficiently activate macrophages to eliminate Trypanosoma cruzi through a nitric oxide dependent mechanism,” Immunology Letters, vol. 73, no. 1, pp. 43–50, 2000. View at Scopus
  60. I. A. Abrahamsohn, A. P. G. da Silva, and R. L. Coffman, “Effects of interleukin-4 deprivation and treatment on resistance to Trypanosoma cruzi,” Infection and Immunity, vol. 68, no. 4, pp. 1975–1979, 2000. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Hëlscher, M. Mohrs, W. J. Dai, et al., “Tumor necrosis factor alpha-mediated toxic shock in Trypanosoma cruzi- infected interleukin 10-deficient mice,” Infection and Immunity, vol. 68, no. 7, pp. 4075–4083, 2000. View at Publisher · View at Google Scholar · View at Scopus
  62. L. Giordanengo, N. Guiñazú, C. Stempin, R. Fretes, F. Cerbán, and S. Gea, “Cruzipain, a major Trypanosoma cruzi antigen, conditions the host immune response in favor of parasite,” European Journal of Immunology, vol. 32, no. 4, pp. 1003–1011, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. C. Stempin, L. Giordanengo, S. Gea, and F. Cerbán, “Alternative activation and increase of Trypanosoma cruzi survival in murine macrophages stimulated by cruzipain, a parasite antigen,” Journal of Leukocyte Biology, vol. 72, no. 4, pp. 727–734, 2002. View at Scopus
  64. C. C. Stempin, T. B. Tanos, O. A. Coso, and F. M. Cerbán, “Arginase induction promotes Trypanosoma cruzi intracellular replication of Cruzipain-treated J774 cells through the activation of multiple signaling pathways,” European Journal of Immunology, vol. 34, no. 1, pp. 200–209, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. D. L. Fabrino, L. L. Leon, G. G. Parreira, M. Genestra, P. E. Almeida, and R. C. N. Melo, “Peripheral blood monocytes show morphological pattern of activation and decreased nitric oxide production during acute Chagas' disease in rats,” Nitric Oxide, vol. 11, no. 2, pp. 166–174, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. L. Piacenza, G. Peluffo, and R. Radi, “L-arginine-dependent suppression of apoptosis in Trypanosoma cruzi: contribution of the nitric oxide and polyamine pathways,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 13, pp. 7301–7306, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. P. Loke, M. G. Nair, J. Parkinson, D. Guiliano, M. Blaxter, and J. E. Allen, “IL-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype,” BMC Immunology, vol. 3, article 7, pp. 1–11, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. G. Raes, P. De Baetselier, W. Noë;l, A. Beschin, F. Brombacher, and H. G. Gholamreza, “Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages,” Journal of Leukocyte Biology, vol. 71, no. 4, pp. 597–602, 2002. View at Scopus
  69. G. Raes, W. Noël, A. Beschin, L. Brys, P. De Baetselier, and Gh. Hassanzadeh, “FIZZ1 and Ym as tools to discriminate between differentially activated macrophages,” Developmental Immunology, vol. 9, no. 3, pp. 151–159, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. G. Raes, R. Van den Bergh, P. De Baetselier, et al., “Arginase-1 and Ym1 are markers for murine, but not human, alternatively activated myeloid cells,” The Journal of Immunology, vol. 174, no. 11, pp. 6561–6562, 2005. View at Scopus
  71. S. Babu, V. Kumaraswami, and T. B. Nutman, “Alternatively activated and immunoregulatory monocytes in human filarial infections,” Journal of Infectious Diseases, vol. 199, no. 12, pp. 1827–1837, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. A. L. Scott, “The alternatively activated human-redux,” Journal of Infectious Diseases, vol. 199, no. 12, pp. 1723–1725, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Munder, F. Mollinedo, J. Calafat, et al., “Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity,” Blood, vol. 105, no. 6, pp. 2549–2556, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Munder, H. Schneider, C. Luckner, et al., “Suppression of T-cell functions by human granulocyte arginase,” Blood, vol. 108, no. 5, pp. 1627–1634, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. P. Kropf, D. Baud, S. E. Marshall, et al., “Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy,” European Journal of Immunology, vol. 37, no. 4, pp. 935–945, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. V. Bronte and P. Zanovello, “Regulation of immune responses by L-arginine metabolism,” Nature Reviews Immunology, vol. 5, no. 8, pp. 641–654, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Modolell, B. S. Choi, R. O. Ryan, et al., “Local suppression of T cell responses by arginase-induced L-arginine depletion in nonhealing leishmaniasis,” PLoS Neglected Tropical Diseases, vol. 3, no. 7, article e480, 2009.
  78. Y. Latchman, C. R. Wood, T. Chernova, et al., “PD-L2 is a second ligand for PD-1 and inhibits T cell activation,” Nature Immunology, vol. 2, no. 3, pp. 261–268, 2001. View at Publisher · View at Google Scholar · View at Scopus
  79. Y. E. Latchman, S. C. Liang, Y. Wu, et al., “PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 29, pp. 10691–10696, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. P. Smith, C. M. Walsh, N. E. Mangan, et al., “Schistosoma mansoni worms induce anergy of T cells via selective up-regulation of programmed death ligand 1 on macrophages,” The Journal of Immunology, vol. 173, no. 2, pp. 1240–1248, 2004. View at Scopus
  81. F. Kierszenbaum, M. B. Sztein, and L. A. Beltz, “Decreased human IL-2 receptor expression due to a protozoan pathogen,” Trends in Immunology, vol. 10, no. 4, pp. 129–131, 1989. View at Scopus
  82. Y. Liu, Y. Yu, S. Yang, et al., “Regulation of arginase i activity and expression by both PD-1 and CTLA-4 on the myeloid-derived suppressor cells,” Cancer Immunology, Immunotherapy, vol. 58, no. 5, pp. 687–697, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. J. Oberlies, C. Watzl, T. Giese, et al., “Regulation of NK cell function by human granulocyte arginase,” The Journal of Immunology, vol. 182, no. 9, pp. 5259–5267, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. I. M. Corraliza, M. Modolell, E. Ferber, and G. Soler, “Involvement of protein kinase A in the induction of arginase in murine bone marrow-derived macrophages,” Biochimica et Biophysica Acta, vol. 1334, no. 2-3, pp. 123–128, 1997. View at Publisher · View at Google Scholar · View at Scopus
  85. C.-I. Chang, B. Zoghi, J. C. Liao, and L. Kuo, “The involvement of tyrosine kinases, cyclic AMP/protein kinase A, and p38 mitogen-activated protein kinase in IL-13-mediated arginase I induction in macrophages: its implications in IL-13-inhibited nitric oxide production,” The Journal of Immunology, vol. 165, no. 4, pp. 2134–2141, 2000. View at Scopus
  86. I. Haffner, D. Teupser, L. M. Holdt, J. Ernst, R. Burkhardt, and J. Thiery, “Regulation of arginase-1 expression in macrophages by a protein kinase A type I and histone deacetylase dependent pathway,” Journal of Cellular Biochemistry, vol. 103, no. 2, pp. 520–527, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. C. C. Stempin, V. V. Garrido, L. R. Dulgerian, and F. M. Cerbán, “Cruzipain and SP600125 induce p38 activation, alter NO/arginase balance and favor the survival of Trypanosoma cruzi in macrophages,” Acta Tropica, vol. 106, no. 2, pp. 119–127, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. A.-L. Pauleau, R. Rutschman, R. Lang, A. Pernis, S. S. Watowich, and P. J. Murray, “Enhancer-mediated control of macrophage-specific arginase I expression,” The Journal of Immunology, vol. 172, no. 12, pp. 7565–7573, 2004. View at Scopus
  89. R. Rutschman, R. Lang, M. Hesse, J. N. Ihle, T. A. Wynn, and P. J. Murray, “Cutting edge: Stat6-dependent substrate depletion regulates nitric oxide production,” The Journal of Immunology, vol. 166, no. 4, pp. 2173–2177, 2001. View at Scopus
  90. K. C. El Kasmi, J. E. Qualls, J. T. Pesce, et al., “Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens,” Nature Immunology, vol. 9, no. 12, pp. 1399–1406, 2008. View at Publisher · View at Google Scholar · View at Scopus