About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 737125, 7 pages
http://dx.doi.org/10.1155/2010/737125
Review Article

Toll-Like Receptor Initiated Host Defense against Toxoplasma gondii

Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA

Received 9 September 2009; Accepted 30 September 2009

Academic Editor: Jorge Morales-Montor

Copyright © 2010 Eric Y. Denkers. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. P. Dubey, “The history and life-cycle of Toxoplasma gondii,” in Toxoplasma Gondii: The Model Apicomplexan. Perspectives and Methods, L. M. Weiss and K. Kim, Eds., pp. 1–17, Academic Press, San Diego, Calif, USA, 2007.
  2. E. Y. Denkers and R. T. Gazzinelli, “Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection,” Clinical Microbiology Reviews, vol. 11, no. 4, pp. 569–588, 1998.
  3. R. Gazzinelli, Y. Xu, S. Hieny, A. Cheever, and A. Sher, “Simultaneous depletion of CD4+ and CD8+ T lymphocytes is required to reactivate chronic infection with Toxoplasma gondii,” Journal of Immunology, vol. 149, no. 1, pp. 175–180, 1992.
  4. Y. Suzuki, F. K. Conley, and J. S. Remington, “Importance of endogenous IFN-γ for prevention of toxoplasmic encephalitis in mice,” Journal of Immunology, vol. 143, no. 6, pp. 2045–2050, 1989.
  5. J. G. Montoya and O. Liesenfeld, “Toxoplasmosis,” The Lancet, vol. 363, no. 9425, pp. 1965–1976, 2004. View at Publisher · View at Google Scholar · View at PubMed
  6. J. Aliberti, D. Jankovic, and A. Sher, “Turning it on and off: regulation of dendritic cell function in Toxoplasma gondii infection,” Immunological Reviews, vol. 201, no. 1, pp. 26–34, 2004. View at Publisher · View at Google Scholar · View at PubMed
  7. R. T. Gazzinelli, S. Hieny, T. A. Wynn, S. Wolf, and A. Sher, “Interleukin 12 is required for the T-lymphocyte-independent induction of interferon γ by an intracellular parasite and induces resistance in T-cell- deficient hosts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 13, pp. 6115–6119, 1993.
  8. R. T. Gazzinelli, M. Wysocka, S. Hayashi, et al., “Parasite-induced IL-12 stimulates early IFN-γ synthesis and resistance during acute infection with Toxoplasma gondii,” Journal of Immunology, vol. 153, no. 6, pp. 2533–2543, 1994.
  9. G. Yap, M. Pesin, and A. Sher, “Cutting edge: IL-12 is required for the maintenance of IFN-γ production in T cells mediating chronic resistance to the intracellular pathogen, Toxoplasma gondii,” Journal of Immunology, vol. 165, no. 2, pp. 628–631, 2000.
  10. S. K. Bliss, B. A. Butcher, and E. Y. Denkers, “Rapid recruitment of neutrophils containing prestored IL-12 during microbial infection,” Journal of Immunology, vol. 165, no. 8, pp. 4515–4521, 2000.
  11. C. Reis e Sousa, S. Hieny, T. Scharton-Kersten, et al., “In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas,” The Journal of Experimental Medicine, vol. 186, pp. 1819–1829, 1997.
  12. C. Reis e Sousa, A. Sher, and P. Kaye, “The role of dendritic cells in the induction and regulation of immunity to microbial infection,” Current Opinion in Immunology, vol. 11, no. 4, pp. 392–399, 1999. View at Publisher · View at Google Scholar
  13. R. T. Gazzinelli, M. Wysocka, S. Hieny, et al., “In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-γ, and TNF-α,” Journal of Immunology, vol. 157, no. 2, pp. 798–805, 1996.
  14. Y. Suzuki, A. Sher, G. Yap, et al., “IL-10 is required for prevention of necrosis in the small intestine and mortality in both genetically resistant BALB/c and susceptible C57BL/6 mice following peroral infection with Toxoplasma gondii,” Journal of Immunology, vol. 164, no. 10, pp. 5375–5382, 2000.
  15. D. Jankovic, M. C. Kullberg, C. G. Feng, et al., “Conventional T-bet+Foxp3 Th1 cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection,” Journal of Experimental Medicine, vol. 204, no. 2, pp. 273–283, 2007. View at Publisher · View at Google Scholar · View at PubMed
  16. C. A. Scanga, J. Aliberti, D. Jankovic, et al., “Cutting edge: MyD88 is required for resistance to Toxoplasma gondii infection and regulates parasite-induced IL-12 production by dendritic cells,” Journal of Immunology, vol. 168, no. 12, pp. 5997–6001, 2002.
  17. W. Sukhumavasi, C. E. Egan, A. L. Warren, et al., “TLR adaptor MyD88 is essential for pathogen control during oral Toxoplasma gondii infection but not adaptive immunity induced by a vaccine strain of the parasite,” Journal of Immunology, vol. 181, no. 5, pp. 3464–3473, 2008.
  18. N. Hitziger, I. Dellacasa, B. Albiger, and A. Barragan, “Dissemination of Toxoplasma gondii to immunoprivileged organs and role of Toll/interleukin-1 receptor signalling for host resistance assessed by in vivo bioluminescence imaging,” Cellular Microbiology, vol. 7, no. 6, pp. 837–848, 2005. View at Publisher · View at Google Scholar · View at PubMed
  19. F. Yarovinsky, D. Zhang, J. F. Andersen, et al., “TLR activation of dendritic cells by a protozoan profilin-like protein,” Science, vol. 308, no. 5728, pp. 1626–1629, 2005. View at Publisher · View at Google Scholar · View at PubMed
  20. A. Benson, R. Pifer, C. L. Behrendt, L. V. Hooper, and F. Yarovinsky, “Gut commensal bacteria direct a protective immune response against Toxoplasma gondii,” Cell Host & Microbe, vol. 6, no. 2, pp. 187–196, 2009. View at Publisher · View at Google Scholar · View at PubMed
  21. H.-S. Mun, F. Aosai, K. Norose, et al., “TLR2 as an essential molecule for protective immunity against Toxoplasma gondii infection,” International Immunology, vol. 15, no. 9, pp. 1081–1087, 2003. View at Publisher · View at Google Scholar
  22. T. Furuta, T. Kikuchi, S. Akira, N. Watanabe, and Y. Yoshikawa, “Roles of the small intestine for induction of toll-like receptor 4-mediated innate resistance in naturally acquired murine toxoplasmosis,” International Immunology, vol. 18, no. 12, pp. 1655–1662, 2006. View at Publisher · View at Google Scholar · View at PubMed
  23. M. M. Heimesaat, A. Fischer, H.-K. Jahn, et al., “Exacerbation of murine ileitis by Toll-like receptor 4 mediated sensing of lipopolysaccharide from commensal Escherichia coli,” Gut, vol. 56, no. 7, pp. 941–948, 2007. View at Publisher · View at Google Scholar · View at PubMed
  24. F. Debierre-Grockiego, M. A. Campos, N. Azzouz, et al., “Activation of TLR2 and TLR4 by glycosylphosphatidylinositols derived from Toxoplasma gondii,” Journal of Immunology, vol. 179, no. 2, pp. 1129–1137, 2007.
  25. L. A. Minns, L. C. Menard, D. M. Foureau, et al., “TLR9 is required for the gut-associated lymphoid tissue response following oral infection of Toxoplasma gondii,” Journal of Immunology, vol. 176, no. 12, pp. 7589–7597, 2006.
  26. C. A. Janeway Jr., “Approaching the asymptote? Evolution and revolution in immunology,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 54, no. 1, pp. 1–13, 1989.
  27. R. Medzhitov, P. Preston-Hurlburt, and C. A. Janeway Jr., “A human homologue of the Drosophila toll protein signals activation of adaptive immunity,” Nature, vol. 388, no. 6640, pp. 394–397, 1997. View at Publisher · View at Google Scholar · View at PubMed
  28. S. Uematsu and S. Akira, “Toll-Like receptors (TLRs) and their ligands,” in Toll-Like Receptors (TLRs) and Innate Immunity, Handbook of Experimental Pharmacology, pp. 1–20, 2008.
  29. R. T. Gazzinelli and E. Y. Denkers, “Protozoan encounters with Toll-like receptor signalling pathways: implications for host parasitism,” Nature Reviews Immunology, vol. 6, no. 12, pp. 895–906, 2006. View at Publisher · View at Google Scholar · View at PubMed
  30. T. Kawai and S. Akira, “TLR signaling,” Seminars in Immunology, vol. 19, no. 1, pp. 24–32, 2007. View at Publisher · View at Google Scholar · View at PubMed
  31. S. L. Lebeis, B. Bommarius, C. A. Parkos, M. A. Sherman, and D. Kalman, “TLR signaling mediated by MyD88 is required for a protective innate immune response by neutrophils to Citrobacter rodentium,” Journal of Immunology, vol. 179, no. 1, pp. 566–577, 2007.
  32. N. Rodriguez, F. Fend, L. Jennen, et al., “Polymorphonuclear neutrophils improve replication of Chlamydia pneumoniae in vivo upon MyD88-dependent attraction,” Journal of Immunology, vol. 174, no. 8, pp. 4836–4844, 2005.
  33. D. F. LaRosa, J. S. Stumhofer, A. E. Gelman, et al., “T cell expression of MyD88 is required for resistance to Toxoplasma gondii,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 10, pp. 3855–3860, 2008. View at Publisher · View at Google Scholar · View at PubMed
  34. A. Bafica, H. C. Santiago, R. Goldszmid, C. Ropert, R. T. Gazzinelli, and A. Sher, “Cutting edge: TLR9 and TLR2 signaling together account for MyD88-dependent control of parasitemia in Trypanosoma cruzi infection,” Journal of Immunology, vol. 177, no. 6, pp. 3515–3519, 2006.
  35. A. Bafica, C. A. Scanga, C. G. Feng, C. Leifer, A. Cheever, and A. Sher, “TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis,” Journal of Experimental Medicine, vol. 202, no. 12, pp. 1715–1724, 2005. View at Publisher · View at Google Scholar · View at PubMed
  36. C. Lekutis, D. J. P. Ferguson, M. E. Grigg, M. Camps, and J. C. Boothroyd, “Surface antigens of Toxoplasma gondii: variations on a theme,” International Journal for Parasitology, vol. 31, no. 12, pp. 1285–1292, 2001. View at Publisher · View at Google Scholar
  37. F. Debierre-Grockiego, N. Azzouz, J. Schmidt, et al., “Roles of glycosylphosphatidylinositols of Toxoplasma gondii: induction of tumor necrosis factor-α production in macrophages,” The Journal of Biological Chemistry, vol. 278, no. 35, pp. 32987–32993, 2003. View at Publisher · View at Google Scholar · View at PubMed
  38. F. Debierre-Grockiego, N. Molitor, R. T. Schwarz, and C. G. K. Lüder, “Toxoplasma gondii glycosylphosphatidylinositols up-regulate major histocompatibility complex (MHC) molecule expression on primary murine macrophages,” Innate Immunity, vol. 15, no. 1, pp. 25–32, 2009. View at Publisher · View at Google Scholar · View at PubMed
  39. F. Debierre-Grockiego, K. Rabi, J. Schmidt, H. Geyer, R. Geyer, and R. T. Schwarz, “Fatty acids isolated from Toxoplasma gondii reduce glycosylphosphatidylinositol-induced tumor necrosis factor alpha production through inhibition of the NF-κB signaling pathway,” Infection and Immunity, vol. 75, no. 6, pp. 2886–2893, 2007. View at Publisher · View at Google Scholar · View at PubMed
  40. J. Leng, B. A. Butcher, and E. Y. Denkers, “Dysregulation of macrophage signal transduction by Toxoplasma gondii: past progress and recent advances,” Parasite Immunology, vol. 31, no. 12, pp. 717–728, 2009. View at Publisher · View at Google Scholar · View at PubMed
  41. M. A. S. Campos, I. C. Almeida, O. Takeuchi, et al., “Activation of toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite,” Journal of Immunology, vol. 167, no. 1, pp. 416–423, 2001.
  42. M. J. de Veer, J. M. Curtis, T. M. Baldwin, et al., “MyD88 is essential for clearance of Leishmania major: possible role for lipophosphoglycan and Toll-like receptor 2 signaling,” European Journal of Immunology, vol. 33, no. 10, pp. 2822–2831, 2003. View at Publisher · View at Google Scholar · View at PubMed
  43. G. Krishnegowda, A. M. Hajjar, J. Zhu, et al., “Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity,” Journal of Biological Chemistry, vol. 280, no. 9, pp. 8606–8616, 2005. View at Publisher · View at Google Scholar · View at PubMed
  44. A.-C. Oliveira, J. R. Peixoto, L. B. de Arrada, et al., “Expression of functional TLR4 confers proinflammatory responsiveness to Trypanosoma cruzi glycoinositolphospholipids and higher resistance to infection with T. cruzi,” Journal of Immunology, vol. 173, no. 9, pp. 5688–5696, 2004.
  45. C. Ropert, B. S. Franklin, and R. T. Gazzinelli, “Role of TLRs/MyD88 in host resistance and pathogenesis during protozoan infection: lessons from malaria,” Seminars in Immunopathology, vol. 30, no. 1, pp. 41–51, 2008. View at Publisher · View at Google Scholar · View at PubMed
  46. R. T. Gazzinelli, C. Ropert, and M. A. Campos, “Role of the Toll/interleukin-1 receptor signaling pathway in host resistance and pathogenesis during infection with protozoan parasites,” Immunological Reviews, vol. 201, no. 1, pp. 9–25, 2004. View at Publisher · View at Google Scholar · View at PubMed
  47. B. Rosenberg, D. A. Juckett, C. F. Aylsworth, et al., “Protein from intestinal Eimeria protozoan stimulates IL-12 release from dendritic cells, exhibits antitumor properties in vivo and is correlated with low intestinal tumorigenicity,” International Journal of Cancer, vol. 114, no. 5, pp. 756–765, 2005. View at Publisher · View at Google Scholar · View at PubMed
  48. F. Plattner, F. Yarovinsky, S. Romero, et al., “Toxoplasma profilin is essential for host cell invasion and TLR11-dependent induction of an interleukin-12 response,” Cell Host & Microbe, vol. 3, no. 2, pp. 77–87, 2008. View at Publisher · View at Google Scholar · View at PubMed
  49. D. Zhang, G. Zhang, M. S. Hayden, et al., “A toll-like receptor that prevents infection by uropathogenic bacteria,” Science, vol. 303, no. 5663, pp. 1522–1526, 2004. View at Publisher · View at Google Scholar · View at PubMed
  50. E. Y. Denkers and B. Striepen, “Deploying parasite profilin on a mission of invasion and danger,” Cell Host & Microbe, vol. 3, no. 2, pp. 61–63, 2008. View at Publisher · View at Google Scholar · View at PubMed
  51. D. Kabelitz and R. Medzhitov, “Innate immunity—cross-talk with adaptive immunity through pattern recognition receptors and cytokines,” Current Opinion in Immunology, vol. 19, no. 1, pp. 1–3, 2007. View at Publisher · View at Google Scholar · View at PubMed
  52. F. Yarovinsky, H. Kanzler, S. Hieny, R. L. Coffman, and A. Sher, “Toll-like receptor recognition regulates immunodominance in an antimicrobial CD4+ T cell response,” Immunity, vol. 25, no. 4, pp. 655–664, 2006. View at Publisher · View at Google Scholar · View at PubMed
  53. O. Liesenfeld, J. Kosek, J. S. Remington, and Y. Suzuki, “Association of CD4+ T cell-dependent, interferon-γ-mediated necrosis of the small intestine with genetic susceptibility of mice to peroral infection with Toxoplasma gondii,” Journal of Experimental Medicine, vol. 184, no. 2, pp. 597–607, 1996.
  54. M. Schreiner and O. Liesenfeld, “Small intestinal inflammation following oral infection with Toxoplasma gondii does not occur exclusively in C57BL/6 mice: review of 70 reports from the literature,” Memorias do Instituto Oswaldo Cruz, vol. 104, no. 2, pp. 221–233, 2009.
  55. S. Brand, “Crohn's disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn's disease,” Gut, vol. 58, no. 8, pp. 1152–1167, 2009. View at Publisher · View at Google Scholar · View at PubMed
  56. O. Liesenfeld, “Oral infection of C57BL/6 mice with Toxoplasma gondii: a new model of inflammatory bowel disease?” Journal of Infectious Diseases, vol. 185, pp. S96–S101, 2002. View at Publisher · View at Google Scholar · View at PubMed
  57. R. J. Xavier and D. K. Podolsky, “Unravelling the pathogenesis of inflammatory bowel disease,” Nature, vol. 448, no. 7152, pp. 427–434, 2007. View at Publisher · View at Google Scholar · View at PubMed
  58. M. M. Heimesaat, S. Bereswill, A. Fischer, et al., “Gram-negative bacteria aggravate murine small intestinal Th1-type immunopathology following oral infection with Toxoplasma gondii,” Journal of Immunology, vol. 177, no. 12, pp. 8785–8795, 2006.
  59. E. Y. Denkers, “A gut feeling for microbes: getting it going between a parasite and its host,” Cell Host & Microbe, vol. 6, no. 2, pp. 104–106, 2009. View at Publisher · View at Google Scholar · View at PubMed
  60. L. Kim, B. A. Butcher, C. W. Lee, S. Uematsu, S. Akira, and E. Y. Denkers, “Toxoplasma gondii genotype determines MyD88-dependent signaling in infected macrophages,” Journal of Immunology, vol. 177, no. 4, pp. 2584–2591, 2006.
  61. P. M. Robben, D. G. Mordue, S. M. Truscott, K. Takeda, S. Akira, and L. D. Sibley, “Production of IL-12 by macrophages infected with Toxoplasma gondii depends on the parasite genotype,” Journal of Immunology, vol. 172, no. 6, pp. 3686–3694, 2004.
  62. J. P. J. Saeij, S. Coller, J. P. Boyle, M. E. Jerome, M. W. White, and J. C. Boothroyd, “Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue,” Nature, vol. 445, no. 7125, pp. 324–327, 2007. View at Publisher · View at Google Scholar · View at PubMed
  63. B. A. Butcher, L. Kim, A. D. Panopoulos, S. S. Watowich, P. J. Murray, and E. Y. Denkers, “Cutting edge: IL-10-independent STAT3 activation by Toxoplasma gondii mediates suppression of IL-12 and TNF-α in host macrophages,” Journal of Immunology, vol. 174, no. 6, pp. 3148–3152, 2005.
  64. B. A. Fox and D. J. Bzik, “De novo pyrimidine biosynthesis is required for virulence of Toxoplasma gondii,” Nature, vol. 415, no. 6874, pp. 926–929, 2002. View at Publisher · View at Google Scholar · View at PubMed
  65. C. W. Lee, W. Sukhumavasi, and E. Y. Denkers, “Phosphoinositide-3-kinase-dependent, MyD88-independent induction of CC-type chemokines characterizes the macrophage response to Toxoplasma gondii strains with high virulence,” Infection and Immunity, vol. 75, no. 12, pp. 5788–5797, 2007. View at Publisher · View at Google Scholar · View at PubMed
  66. L. Kim and E. Y. Denkers, “Toxoplasma gondii triggers Gi-dependent PI 3-kinase signaling required for inhibition of host cell apoptosis,” Journal of Cell Science, vol. 119, no. 10, pp. 2119–2126, 2006. View at Publisher · View at Google Scholar · View at PubMed
  67. J. Aliberti, C. Reis e Sousa, M. Schito, et al., “CCR5 provides a signal for microbial induced production of IL-12 by CD8α+ dendritic cells,” Nature Immunology, vol. 1, pp. 83–87, 2000.
  68. H. von Bernuth, C. Picard, Z. Jin, et al., “Pyogenic bacterial infections in humans with MyD88 deficiency,” Science, vol. 321, no. 5889, pp. 691–696, 2008. View at Publisher · View at Google Scholar · View at PubMed