About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 789798, 9 pages
http://dx.doi.org/10.1155/2010/789798
Research Article

Functional Differences between the N-Terminal Domains of Mouse and Human Myosin Binding Protein-C

1Department of Neurobiology, Physiology and Behavior, University of California-Davis, Davis, CA 95616-8519, USA
2Department of Bioengineering, University of Washington, Seattle, WA 98195-5061, USA

Received 16 December 2009; Accepted 31 January 2010

Academic Editor: Henk L. M. Granzier

Copyright © 2010 Justin F. Shaffer et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. E. Stelzer, J. R. Patel, J. W. Walker, and R. L. Moss, “Differential roles of cardiac myosin-binding protein C and cardiac troponin I in the myofibrillar force responses to protein kinase A phosphorylation,” Circulation Research, vol. 101, no. 5, pp. 503–511, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. C. W. Tong, J. E. Stelzer, M. L. Greaser, P. A. Powers, and R. L. Moss, “Acceleration of crossbridge kinetics by protein kinase a phosphorylation of cardiac myosin binding protein C modulates cardiac function,” Circulation Research, vol. 103, no. 9, pp. 974–982, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. J. F. Shaffer, R. W. Kensler, and S. P. Harris, “The myosin-binding protein C motif binds to F-actin in a phosphorylation-sensitive manner,” Journal of Biological Chemistry, vol. 284, no. 18, pp. 12318–12327, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Gruen, H. Prinz, and M. Gautel, “cAPK-phosphorylation controls the interaction of the regulatory domain of cardiac myosin binding protein C with myosin-S2 in an on-off fashion,” FEBS Letters, vol. 453, no. 3, pp. 254–259, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. M. V. Razumova, J. F. Shaffer, A.-Y. Tu, G. V. Flint, M. Regnier, and S. P. Harris, “Effects of the N-terminal domains of myosin binding protein-C in an in vitro motility assay: evidence for long-lived cross-bridges,” Journal of Biological Chemistry, vol. 281, no. 47, pp. 35846–35854, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. M. V. Razumova, K. L. Bezold, A.-Y. Tu, M. Regnier, and S. P. Harris, “Contribution of the myosin binding protein C motif to functional effects in permeabilized rat trabeculae,” Journal of General Physiology, vol. 132, no. 5, pp. 575–585, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. T. J. Herron, E. Rostkova, G. Kunst, R. Chaturvedi, M. Gautel, and J. C. Kentish, “Activation of myocardial contraction by the N-terminal domains of myosin binding protein-C,” Circulation Research, vol. 98, no. 10, pp. 1290–1298, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Bicer and P. J. Reiser, “Variations in apparent mass of mammalian fast-type myosin light chains correlate with species body size, from shrew to elephant,” American Journal of Physiology, vol. 292, no. 1, pp. R527–R534, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Gasteiger, A. Gattiker, C. Hoogland, I. Ivanyi, R. D. Appel, and A. Bairoch, “ExPASy: the proteomics server for in-depth protein knowledge and analysis,” Nucleic Acids Research, vol. 31, no. 13, pp. 3784–3788, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Zhu, G. Cai, E. O. Hall, and G. J. Freeman, “In-fusionTM assembly: seamless engineering of multidomain fusion proteins, modular vectors, and mutations,” BioTechniques, vol. 43, no. 3, pp. 354–359, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Gautel, O. Zuffardi, P. Freiburg, and S. Labeit, “Phosphorylation switches specific for the cardiac isoform of myosin binding protein-C: a modulator of cardiac contraction?” EMBO Journal, vol. 14, no. 9, pp. 1952–1960, 1995. View at Scopus
  12. E. Jain, A. Bairoch, S. Duvaud, et al., “Infrastructure for the life sciences: design and implementation of the UniProt website,” BMC Bioinformatics, vol. 10, article 136, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. S. S. Margossian and S. Lowey, “Preparation of myosin and its subfragments from rabbit skeletal muscle,” Methods in Enzymology, vol. 85, part B, pp. 55–71, 1982. View at Scopus
  14. J. D. Potter, “Preparation and properties of the components from troponin,” Methods in Enzymology, vol. 85, part B, pp. 241–263, 1982.
  15. J. D. Pardee and J. A. Spudich, “Purification of muscle actin,” Methods in Enzymology, vol. 85, part B, pp. 164–181, 1982. View at Scopus
  16. L. B. Smillie, “Preparation and identification of α- and β-tropomyosins,” Methods in Enzymology, vol. 85, part B, pp. 234–241, 1982. View at Scopus
  17. E. Homsher, B. Kim, A. Bobkova, and L. S. Tobacman, “Calcium regulation of thin filament movement in an in vitro motility assay,” Biophysical Journal, vol. 70, no. 4, pp. 1881–1892, 1996. View at Scopus
  18. D. A. Martyn, P. B. Chase, J. D. Hannon, L. L. Huntsman, M. J. Kushmerick, and A. M. Gordon, “Unloaded shortening of skinned muscle fibers from rabbit activated with and without Ca2+,” Biophysical Journal, vol. 67, no. 5, pp. 1984–1993, 1994. View at Scopus
  19. M. Regnier, A. J. Rivera, C.-K. Wang, M. A. Bates, P. B. Chase, and A. M. Gordon, “Thin filament near-neighbour regulatory unit interactions affect rabbit skeletal muscle steady-state force-Ca2+ relations,” Journal of Physiology, vol. 540, pp. 485–497, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. H. D. White, “Special instrumentation and techniques for kinetic studies of contractile systems,” Methods in Enzymology, vol. 85, part B, pp. 698–708, 1982. View at Scopus
  21. J. Flavigny, M. Souchet, P. Sébillon, et al., “COOH-terminal truncated cardiac myosin-binding protein C mutants resulting from familial hypertrophic cardiomyopathy mutations exhibit altered expression and/or incorporation in fetal rat cardiomyocytes,” Journal of Molecular Biology, vol. 294, no. 2, pp. 443–456, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Ababou, E. Rostkova, S. Mistry, C. L. Masurier, M. Gautel, and M. Pfuhl, “Myosin binding protein C positioned to play a key role in regulation of muscle contraction: structure and interactions of domain C1,” Journal of Molecular Biology, vol. 384, no. 3, pp. 615–630, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Gruen and M. Gautel, “Mutations in β-myosin S2 that cause familial hypertrophic cardiomyopathy (FHC) abolish the interaction with the regulatory domain of myosin-binding protein-C,” Journal of Molecular Biology, vol. 286, no. 3, pp. 933–949, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. J. M. Squire, P. K. Luther, and C. Knupp, “Structural evidence for the interaction of C-protein (MyBP-C) with actin and sequence identification of a possible actin-binding domain,” Journal of Molecular Biology, vol. 331, no. 3, pp. 713–724, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Kulikovskaya, G. McClellan, J. Flavigny, L. Carrier, and S. Winegrad, “Effect of MyBP-C binding to actin on contractility in heart muscle,” Journal of General Physiology, vol. 122, no. 6, pp. 761–774, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. M. C. Schaub, et al., “Modulation of contractility in human cardiac hypertrophy by myosin essential light chain isoforms,” Cardiovascular Research, vol. 37, no. 2, pp. 381–404, 1998.
  27. O. A. Andreev, L. D. Saraswat, S. Lowey, C. Slaughter, and J. Borejdo, “Interaction of the N-terminus of chicken skeletal essential light chain 1 with F-actin,” Biochemistry, vol. 38, no. 8, pp. 2480–2485, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. I. P. Trayer, H. R. Trayer, and B. A. Levine, “Evidence that the N-terminal region of A1-light chain of myosin interacts directly with the C-terminal region of actin. A proton magnetic resonance study,” European Journal of Biochemistry, vol. 164, no. 1, pp. 259–266, 1987. View at Scopus
  29. D. J. Timson and I. P. Trayer, “The role of the proline-rich region in A1-type myosin essential light chains: implications for information transmission in the actomyosin complex,” FEBS Letters, vol. 400, no. 1, pp. 31–36, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. H. L. Sweeney, C. Reggiani, S. Lowey, et al., “Function of the N terminus of the myosin essential light chain of vertebrate striated muscle,” Biophysical Journal, vol. 68, no. 4, supplement, pp. 112S–119S, 1995.
  31. F. S. Korte, K. S. McDonald, S. P. Harris, and R. L. Moss, “Loaded shortening, power output, and rate of force redevelopment are increased with knockout of cardiac myosin binding protein-C,” Circulation Research, vol. 93, no. 8, pp. 752–758, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. J. F. Shaffer and S. P. Harris, “Species-specific differences in the Pro-Ala rich region of cardiac myosin binding protein-C,” Journal of Muscle Research and Cell Motility, vol. 30, no. 7-8, pp. 303–306, 2009.
  33. N. Hamilton and C. D. Ianuzzo, “Contractile and calcium regulating capacities of myocardia of different sized mammals scale with resting heart rate,” Molecular and Cellular Biochemistry, vol. 106, no. 2, pp. 133–141, 1991. View at Scopus
  34. B. Pope, J. F. Hoh, and A. Weeds, “The ATPase activities of rat cardiac myosin isoenzymes,” FEBS Letters, vol. 118, no. 2, pp. 205–208, 1980. View at Publisher · View at Google Scholar · View at Scopus
  35. I. Morano, H. Arndt, C. Gartner, and J. C. Ruegg, “Skinned fibers of human atrium and ventricle: myosin isoenzymes and contractility,” Circulation Research, vol. 62, no. 3, pp. 632–639, 1988. View at Scopus
  36. K. Schwartz, Y. Lecarpentier, and J. L. Martin, “Myosin isoenzymic distribution correlates with speed of myocardial contraction,” Journal of Molecular and Cellular Cardiology, vol. 13, no. 12, pp. 1071–1075, 1981. View at Scopus