About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 807084, 12 pages
http://dx.doi.org/10.1155/2010/807084
Review Article

Physiologic Basis and Pathophysiologic Implications of the Diastolic Properties of the Cardiac Muscle

Department of Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal

Received 1 November 2009; Revised 15 February 2010; Accepted 21 March 2010

Academic Editor: Henk L. M. Granzier

Copyright © 2010 João Ferreira-Martins and Adelino F. Leite-Moreira. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Lammerding, R. D. Kamm, and R. T. Lee, “Mechanotransduction in cardiac myocytes,” Annals of the New York Academy of Sciences, vol. 1015, pp. 53–70, 2004. View at Publisher · View at Google Scholar · View at PubMed
  2. M. A. Sussman, A. McCulloch, and T. K. Borg, “Dance band on the Titanic: biomechanical signaling in cardiac hypertrophy,” Circulation Research, vol. 91, no. 10, pp. 888–898, 2002. View at Publisher · View at Google Scholar
  3. A. W. Orr, B. P. Helmke, B. R. Blackman, and M. A. Schwartz, “Mechanisms of mechanotransduction,” Developmental Cell, vol. 10, no. 1, pp. 11–20, 2006. View at Publisher · View at Google Scholar · View at PubMed
  4. B. Swynghedauw, “Phenotypic plasticity of adult myocardium: molecular mechanisms,” Journal of Experimental Biology, vol. 209, no. 12, pp. 2320–2327, 2006. View at Publisher · View at Google Scholar · View at PubMed
  5. D. D. Bonnema, C. S. Webb, W. R. Pennington, et al., “Effects of age on plasma matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs),” Journal of Cardiac Failure, vol. 13, no. 7, pp. 530–540, 2007. View at Publisher · View at Google Scholar · View at PubMed
  6. B. P. Shapiro, C. S. P. Lam, J. B. Patel, et al., “Acute and chronic ventricular-arterial coupling in systole and diastole: insights from an elderly hypertensive model,” Hypertension, vol. 50, no. 3, pp. 503–511, 2007. View at Publisher · View at Google Scholar · View at PubMed
  7. H. Masugata, S. Senda, F. Goda, et al., “Left ventricular diastolic dysfunction in normotensive diabetic patients in various age strata,” Diabetes Research and Clinical Practice, vol. 79, no. 1, pp. 91–96, 2008. View at Publisher · View at Google Scholar · View at PubMed
  8. L. van Heerebeek, N. Hamdani, M. L. Handoko, et al., “Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension,” Circulation, vol. 117, no. 1, pp. 43–51, 2008. View at Publisher · View at Google Scholar · View at PubMed
  9. C. Y. Wong, T. O'Moore-Sullivan, R. Leano, N. Byrne, E. Beller, and T. H. Marwick, “Alterations of left ventricular myocardial characteristics associated with obesity,” Circulation, vol. 110, no. 19, pp. 3081–3087, 2004. View at Publisher · View at Google Scholar · View at PubMed
  10. B. D. Powell, M. M. Redfield, K. A. Bybee, W. K. Freeman, and C. S. Rihal, “Association of obesity with left ventricular remodeling and diastolic dysfunction in patients without coronary artery disease,” American Journal of Cardiology, vol. 98, no. 1, pp. 116–120, 2006. View at Publisher · View at Google Scholar · View at PubMed
  11. J. F. Carroll, R. L. Summers, D. J. Dzielak, K. Cockrell, J.-P. Montani, and H. L. Mizelle, “Diastolic compliance is reduced in obese rabbits,” Hypertension, vol. 33, no. 3, pp. 811–815, 1999.
  12. J. M. McGavock, R. G. Victor, R. H. Unger, and L. S. Szczepaniak, “Adiposity of the heart, revisited,” Annals of Internal Medicine, vol. 144, no. 7, pp. 517–524, 2006.
  13. M. Pascual, D. A. Pascual, F. Soria, et al., “Effects of isolated obesity on systolic and diastolic left ventricular function,” Heart, vol. 89, no. 10, pp. 1152–1156, 2003.
  14. J. F. Carroll, D. S. Braden, K. Cockrell, and H. L. Mizelle, “Obese hypertensive rabbits develop concentric and eccentric hypertrophy and diastolic filling abnormalities,” American Journal of Hypertension, vol. 10, no. 2, pp. 230–233, 1997. View at Publisher · View at Google Scholar
  15. L. R. Peterson, A. D. Waggoner, K. B. Schechtman, et al., “Alterations in left ventricular structure and function in young healthy obese women: assessment by echocardiography and tissue Doppler imaging,” Journal of the American College of Cardiology, vol. 43, no. 8, pp. 1399–1404, 2004. View at Publisher · View at Google Scholar · View at PubMed
  16. V. Regitz-Zagrosek, S. Brokat, and C. Tschope, “Role of gender in heart failure with normal left ventricular ejection fraction,” Progress in Cardiovascular Diseases, vol. 49, no. 4, pp. 241–251, 2007. View at Publisher · View at Google Scholar · View at PubMed
  17. F. A. Masoudi, E. P. Havranek, G. Smith, et al., “Gender, age, and heart failure with preserved left ventricular systolic function,” Journal of the American College of Cardiology, vol. 41, no. 2, pp. 217–223, 2003. View at Publisher · View at Google Scholar
  18. P. R. Mitoff, A. Al-Hesayen, E. Azevedo, G. E. Newton, and S. Mak, “Sex differences in basal hemodynamics and left ventricular function in humans with and without heart failure,” American Heart Journal, vol. 154, no. 3, pp. 575–580, 2007. View at Publisher · View at Google Scholar · View at PubMed
  19. M. M. Redfield, S. J. Jacobsen, B. A. Borlaug, R. J. Rodeheffer, and D. A. Kass, “Age- and gender-related ventricular-vascular stiffening: a community-based study,” Circulation, vol. 112, no. 15, pp. 2254–2262, 2005. View at Publisher · View at Google Scholar · View at PubMed
  20. Y. Izumi, K. Matsumoto, Y. Ozawa, et al., “Effect of age at menopause on blood pressure in postmenopausal women,” American Journal of Hypertension, vol. 20, no. 10, pp. 1045–1050, 2007. View at Publisher · View at Google Scholar · View at PubMed
  21. C. S. P. Lam, V. L. Roger, R. J. Rodeheffer, et al., “Cardiac structure and ventricular-vascular function in persons with heart failure and preserved ejection fraction from Olmsted County, Minnesota,” Circulation, vol. 115, no. 15, pp. 1982–1990, 2007. View at Publisher · View at Google Scholar · View at PubMed
  22. W. J. Paulus, C. Tschöpe, J. E. Sanderson, et al., “How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology,” European Heart Journal, vol. 28, no. 20, pp. 2539–2550, 2007. View at Publisher · View at Google Scholar · View at PubMed
  23. W. J. Paulus and J. J. M. van Ballegoij, “Treatment of heart failure with normal ejection fraction. An inconvenient truth!,” Journal of the American College of Cardiology, vol. 55, no. 6, pp. 526–537, 2010. View at Publisher · View at Google Scholar · View at PubMed
  24. S. S. Najjar, “Heart failure with preserved ejection fraction. Failure to preserve, failure of reserve, and failure on the compliance curve,” Journal of the American College of Cardiology, vol. 54, no. 5, pp. 419–421, 2009. View at Publisher · View at Google Scholar · View at PubMed
  25. L. van Heerebeek, A. Borbély, H. W. M. Niessen, et al., “Myocardial structure and function differ in systolic and diastolic heart failure,” Circulation, vol. 113, no. 16, pp. 1966–1973, 2006. View at Publisher · View at Google Scholar · View at PubMed
  26. M. Klapholz, M. Maurer, A. M. Lowe, et al., “Hospitalization for heart failure in the presence of a normal left ventricular ejection fraction: results of the New York heart failure registry,” Journal of the American College of Cardiology, vol. 43, no. 8, pp. 1432–1438, 2004. View at Publisher · View at Google Scholar · View at PubMed
  27. D. S. Lee, P. Gona, R. S. Vasan, et al., “Relation of disease pathogenesis and risk factors to heart failure with preserved or reduced ejection fraction: insights from the framingham heart study of the national heart, lung, and blood institute,” Circulation, vol. 119, no. 24, pp. 3070–3077, 2009. View at Publisher · View at Google Scholar · View at PubMed
  28. E. O'Meara, T. Clayton, M. B. McEntegart, et al., “Sex differences in clinical characteristics and prognosis in a broad spectrum of patients with heart failure—results of the Candesartan in Heart failure: assessment of reduction in mortality and morbidity (CHARM) program,” Circulation, vol. 115, no. 24, pp. 3111–3120, 2007. View at Publisher · View at Google Scholar · View at PubMed
  29. V. M. Vizgirda, G. M. Wahler, K. L. Sondgeroth, M. T. Ziolo, and D. W. Schwertz, “Mechanisms of sex differences in rat cardiac myocyte response to β-adrenergic stimulation,” American Journal of Physiology, vol. 282, no. 1, pp. H256–H263, 2002.
  30. R. Dash, K. F. Frank, A. N. Carr, C. S. Moravec, and E. G. Kranias, “Gender influences on sarcoplasmic reticulum Ca2+-handling in failing human myocardium,” Journal of Molecular and Cellular Cardiology, vol. 33, no. 7, pp. 1345–1353, 2001. View at Publisher · View at Google Scholar · View at PubMed
  31. D. W. Schwertz, V. Vizgirda, R. J. Solaro, M. R. Piano, and C. Ryjewski, “Sexual dimorphism in rat left atrial function and response to adrenergic stimulation,” Molecular and Cellular Biochemistry, vol. 200, no. 1-2, pp. 143–153, 1999. View at Publisher · View at Google Scholar
  32. S. Jovanović, A. Jovanović, W. K. Shen, and A. Terzic, “Low concentrations of 17β-estradiol protect single cardiac cells against metabolic stress-induced Ca2+ loading,” Journal of the American College of Cardiology, vol. 36, no. 3, pp. 948–952, 2000. View at Publisher · View at Google Scholar
  33. M. van Eickels, C. Grohé, J. P. M. Cleutjens, B. J. Janssen, H. J. J. Wellens, and P. A. Doevendans, “17β-estradiol attenuates the development of pressure-overload hypertrophy,” Circulation, vol. 104, no. 12, pp. 1419–1423, 2001.
  34. Y. Xu, I. A. Arenas, S. J. Armstrong, and S. T. Davidge, “Estrogen modulation of left ventricular remodeling in the aged heart,” Cardiovascular Research, vol. 57, no. 2, pp. 388–394, 2003. View at Publisher · View at Google Scholar
  35. B. Kuch, M. Muscholl, A. Luchner, et al., “Gender specific differences in left ventricular adaptation to obesity and hypertension,” Journal of Human Hypertension, vol. 12, no. 10, pp. 685–691, 1998.
  36. V. Regitz-Zagrosek and E. Lehmkuhl, “Heart failure and its treatment in women: role of hypertension, diabetes, and estrogen,” Herz, vol. 30, no. 5, pp. 356–367, 2005. View at Publisher · View at Google Scholar · View at PubMed
  37. W. B. Kannel, M. Hjortland, and W. P. Castelli, “Role of diabetes in congestive heart failure: the Framingham study,” American Journal of Cardiology, vol. 34, no. 1, pp. 29–34, 1974.
  38. T. S. Harris, C. F. Baicu, C. H. Conrad, et al., “Constitutive properties of hypertrophied myocardium: cellular contribution to changes in myocardial stiffness,” American Journal of Physiology, vol. 282, no. 6, pp. H2173–H2182, 2002.
  39. A. F. Leite-Moreira, “Current perspectives in diastolic dysfunction and diastolic heart failure,” Heart, vol. 92, no. 5, pp. 712–718, 2006. View at Publisher · View at Google Scholar · View at PubMed
  40. T. C. Gillebert, A. F. Leite-Moreira, and S. G. De Hert, “Load dependent diastolic dysfunction in heart failure,” Heart Failure Reviews, vol. 5, no. 4, pp. 345–355, 2000. View at Publisher · View at Google Scholar
  41. T. C. Gillebert, A. F. Leite-Moreira, and S. G. De Hert, “The hemodynamic manifestation of normal myocardial relaxation. A framework for experimental and clinical evaluation,” Acta Cardiologica, vol. 52, no. 3, pp. 223–246, 1997.
  42. T. C. Gillebert, A. F. Leite-Moreira, and S. G. De Hert, “Relaxation-systolic pressure relation: a load-independent assessment of left ventricular contractility,” Circulation, vol. 95, no. 3, pp. 745–752, 1997.
  43. A. F. Leite-Moreira and J. Correia-Pinto, “Load as an acute determinant of end-diastolic pressure-volume relation,” American Journal of Physiology, vol. 280, no. 1, pp. H51–H59, 2001.
  44. S. K. Gandhi, J. C. Powers, A.-M. Nomeir, et al., “The pathogenesis of acute pulmonary edema associated with hypertension,” The New England Journal of Medicine, vol. 344, no. 1, pp. 17–22, 2001. View at Publisher · View at Google Scholar
  45. B. A. Borlaug and D. A. Kass, “Mechanisms of diastolic dysfunction in heart failure,” Trends in Cardiovascular Medicine, vol. 16, no. 8, pp. 273–279, 2006. View at Publisher · View at Google Scholar · View at PubMed
  46. D. A. Kass, J. G. F. Bronzwaer, and W. J. Paulus, “What mechanisms underlie diastolic dysfunction in heart failure?” Circulation Research, vol. 94, no. 12, pp. 1533–1542, 2004. View at Publisher · View at Google Scholar · View at PubMed
  47. A. F. Leite-Moreira, J. Correia-Pinto, and T. C. Gillebert, “Load dependence of left ventricular contraction and relaxation. Effects of caffeine,” Basic Research in Cardiology, vol. 94, no. 4, pp. 284–293, 1999. View at Publisher · View at Google Scholar
  48. S. F. J. Langer and H. D. Schmidt, “Different left ventricular relaxation parameters in isolated working rat and guinea pig hearts: influence of preload, afterload, temperature, and isoprenaline,” International Journal of Cardiac Imaging, vol. 14, no. 4, pp. 229–240, 1998.
  49. A. F. Leite-Moreira, J. Correia-Pinto, and T. C. Gillebert, “Afterload induced changes in myocardial relaxation: a mechanism for diastolic dysfunction,” Cardiovascular Research, vol. 43, no. 2, pp. 344–353, 1999. View at Publisher · View at Google Scholar
  50. D. M. Bers, “Cardiac excitation-contraction coupling,” Nature, vol. 415, no. 6868, pp. 198–205, 2002. View at Publisher · View at Google Scholar · View at PubMed
  51. A. R. Tupling, M. Asahi, and D. H. MacLennan, “Sarcolipin overexpression in rat slow twitch muscle inhibits sarcoplasmic reticulum Ca2+ uptake and impairs contractile function,” Journal of Biological Chemistry, vol. 277, no. 47, pp. 44740–44746, 2002. View at Publisher · View at Google Scholar · View at PubMed
  52. M. Asahi, Y. Sugita, K. Kurzydlowski, et al., “Sarcolipin regulates sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) by binding to transmembrane helices alone or in association with phospholamban,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 9, pp. 5040–5045, 2003. View at Publisher · View at Google Scholar · View at PubMed
  53. G. J. Babu, P. Bhupathy, N. N. Petrashevskaya, et al., “Targeted overexpression of sarcolipin in the mouse heart decreases sarcoplasmic reticulum calcium transport and cardiac contractility,” Journal of Biological Chemistry, vol. 281, no. 7, pp. 3972–3979, 2006. View at Publisher · View at Google Scholar · View at PubMed
  54. M. Asahi, K. Otsu, H. Nakayama, et al., “Cardiac-specific overexpression of sarcolipin inhibits sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA2a) activity and impairs cardiac function in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 25, pp. 9199–9204, 2004. View at Publisher · View at Google Scholar · View at PubMed
  55. S. O. Marx, S. Reiken, Y. Hisamatsu, et al., “PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts,” Cell, vol. 101, no. 4, pp. 365–376, 2000.
  56. J. van der Velden, Z. Papp, R. Zaremba, et al., “Increased Ca2+-sensitivity of the contractile apparatus in end-stage human heart failure results from altered phosphorylation of contractile proteins,” Cardiovascular Research, vol. 57, no. 1, pp. 37–47, 2003. View at Publisher · View at Google Scholar
  57. S.-I. Yasuda, P. Coutu, S. Sadayappan, J. Robbins, and J. M. Metzger, “Cardiac transgenic and gene transfer strategies converge to support an important role for troponin I in regulating relaxation in cardiac myocytes,” Circulation Research, vol. 101, no. 4, pp. 377–386, 2007. View at Publisher · View at Google Scholar · View at PubMed
  58. M. R. Zile and D. L. Brutsaert, “New concepts in diastolic dysfunction and diastolic heart failure: part II. Causal mechanisms and treatment,” Circulation, vol. 105, no. 12, pp. 1503–1508, 2002. View at Publisher · View at Google Scholar
  59. M. M. LeWinter, Y. Wu, S. Labeit, and H. Granzier, “Cardiac titin: structure, functions and role in disease,” Clinica Chimica Acta, vol. 375, no. 1-2, pp. 1–9, 2007. View at Publisher · View at Google Scholar · View at PubMed
  60. H. Shintani and S. A. Glantz, “The left ventricular diastolic pressure-volume relation, relaxation and filling,” in Left Ventricular Diastolic Dysfunction and Heart Failure, W. H. Gaash and M. M. LeWinter, Eds., pp. 3–24, Lea & Febiger, Philadelphia, Pa, USA, 1994.
  61. H. L. Granzier and S. Labeit, “The giant protein titin: a major player in myocardial mechanics, signaling and disease,” Circulation Research, vol. 94, no. 3, pp. 284–295, 2004. View at Publisher · View at Google Scholar · View at PubMed
  62. A. J. Brady, “Length dependence of passive stiffness in single cardiac myocytes,” American Journal of Physiology, vol. 260, no. 4, pp. H1062–H1071, 1991.
  63. M. Helmes, C. C. Lim, R. Liao, A. Bharti, L. Cui, and D. B. Sawyer, “Titin determines the Frank-Starling relation in early diastole,” Journal of General Physiology, vol. 121, no. 2, pp. 97–110, 2003. View at Publisher · View at Google Scholar
  64. K. Trombitas, A. Redkar, T. Centner, Y. Wu, S. Labeit, and H. Granzier, “Extensibility of isoforms of cardiac titin: variation in contour length of molecular subsegments provides a basis for cellular passive stiffness diversity,” Biophysical Journal, vol. 79, no. 6, pp. 3226–3234, 2000.
  65. S. Nishimura, S.-I. Yasuda, M. Katoh, et al., “Single cell mechanics of rat cardiomyocytes under isometric, unloaded, and physiologically loaded conditions,” American Journal of Physiology, vol. 287, no. 1, pp. H196–H202, 2004. View at Publisher · View at Google Scholar · View at PubMed
  66. A. Borbély, J. van der Velden, Z. Papp, et al., “Cardiomyocyte stiffness in diastolic heart failure,” Circulation, vol. 111, no. 6, pp. 774–781, 2005. View at Publisher · View at Google Scholar · View at PubMed
  67. H. L. Granzier and T. C. Irving, “Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments,” Biophysical Journal, vol. 68, no. 3, pp. 1027–1044, 1995.
  68. M. R. Zile, K. Richardson, M. K. Cowles, et al., “Constitutive properties of adult mammalian cardiac muscle cells,” Circulation, vol. 98, no. 6, pp. 567–579, 1998.
  69. O. Cazorla, A. Freiburg, M. Helmes, et al., “Differential expression of cardiac titin isoforms and modulation of cellular stiffness,” Circulation Research, vol. 86, no. 1, pp. 59–67, 2000.
  70. O. Cazorla, Y. Wu, T. C. Irving, and H. Granzier, “Titin-based modulation of calcium sensitivity of active tension in mouse skinned cardiac myocytes,” Circulation Research, vol. 88, no. 10, pp. 1028–1035, 2001.
  71. N. Fukuda, Y. Wu, G. Farman, T. C. Irving, and H. Granzier, “Titin isoform variance and length dependence of activation in skinned bovine cardiac muscle,” Journal of Physiology, vol. 553, no. 1, pp. 147–154, 2003. View at Publisher · View at Google Scholar · View at PubMed
  72. M. Krüger and W. A. Linke, “Titin-based mechanical signalling in normal and failing myocardium,” Journal of Molecular and Cellular Cardiology, vol. 46, no. 4, pp. 490–498, 2009. View at Publisher · View at Google Scholar
  73. P. F. M. van der Ven, J. W. Bartsch, M. Gautel, H. Jockusch, and D. O. Fürst, “A functional knock-out of titin results in defective myofibril assembly,” Journal of Cell Science, vol. 113, no. 8, pp. 1405–1414, 2000.
  74. H. L. Granzier, M. H. Radke, J. Peng, et al., “Truncation of titin's elastic PEVK region leads to cardiomyopathy with diastolic dysfunction,” Circulation Research, vol. 105, no. 6, pp. 557–564, 2009. View at Publisher · View at Google Scholar · View at PubMed
  75. M. H. Radke, J. Peng, Y. Wu, et al., “Targeted deletion of titin N2B region leads to diastolic dysfunction and cardiac atrophy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 9, pp. 3444–3449, 2007. View at Publisher · View at Google Scholar · View at PubMed
  76. N. Fukuda, Y. Wu, P. Nair, and H. L. Granzier, “Phosphorylation of titin modulates passive stiffness of cardiac muscle in a titin isoform-dependent manner,” Journal of General Physiology, vol. 125, no. 3, pp. 257–271, 2005. View at Publisher · View at Google Scholar · View at PubMed
  77. S. Lahmers, Y. Wu, D. R. Call, S. Labeit, and H. Granzier, “Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium,” Circulation Research, vol. 94, no. 4, pp. 505–513, 2004. View at Publisher · View at Google Scholar · View at PubMed
  78. Y. Wu, S. P. Bell, K. Trombitas, et al., “Changes in titin isoform expression in pacing-induced cardiac failure give rise to increased passive muscle stiffness,” Circulation, vol. 106, no. 11, pp. 1384–1389, 2002. View at Publisher · View at Google Scholar
  79. W. A. Jaber, C. Maniu, J. Krysiak, et al., “Titin isoforms, extracellular matrix, and global chamber remodeling in experimental dilated cardiomyopathy: functional implications and mechanistic insight,” Circulation. Heart failure, vol. 1, no. 3, pp. 192–199, 2008. View at Publisher · View at Google Scholar · View at PubMed
  80. A. Borbély, I. Falcao-Pires, L. van Heerebeek, et al., “Hypophosphorylation of the Stiff N2B titin isoform raises cardiomyocyte resting tension in failing human myocardium,” Circulation Research, vol. 104, no. 6, pp. 780–786, 2009. View at Publisher · View at Google Scholar · View at PubMed
  81. I. Makarenko, C. A. Opitz, M. C. Leake, et al., “Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts,” Circulation Research, vol. 95, no. 7, pp. 708–716, 2004. View at Publisher · View at Google Scholar · View at PubMed
  82. S. F. Nagueh, G. Shah, Y. Wu, et al., “Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy,” Circulation, vol. 110, no. 2, pp. 155–162, 2004. View at Publisher · View at Google Scholar · View at PubMed
  83. C. Neagoe, M. Kulke, F. del Monte, et al., “Titin isoform switch in ischemic human heart disease,” Circulation, vol. 106, no. 11, pp. 1333–1341, 2002. View at Publisher · View at Google Scholar
  84. Y. Wu, J. Peng, K. B. Campbell, S. Labeit, and H. Granzier, “Hypothyroidism leads to increased collagen-based stiffness and re-expression of large cardiac titin isoforms with high compliance,” Journal of Molecular and Cellular Cardiology, vol. 42, no. 1, pp. 186–195, 2007. View at Publisher · View at Google Scholar · View at PubMed
  85. R. Yamasaki, Y. Wu, M. McNabb, M. Greaser, S. Labeit, and H. Granzier, “Protein kinase A phosphorylates titin's cardiac-specific N2B domain and reduces passive tension in rat cardiac myocytes,” Circulation Research, vol. 90, no. 11, pp. 1181–1188, 2002. View at Publisher · View at Google Scholar
  86. M. Krüger and W. A. Linke, “Protein kinase-A phosphorylates titin in human heart muscle and reduces myofibrillar passive tension,” Journal of Muscle Research and Cell Motility, vol. 27, no. 5–7, pp. 435–444, 2006. View at Publisher · View at Google Scholar · View at PubMed
  87. M. Krüger, S. Kötter, A. Grützner, et al., “Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs,” Circulation Research, vol. 104, no. 1, pp. 87–94, 2009. View at Publisher · View at Google Scholar · View at PubMed
  88. C. Hidalgo, B. Hudson, J. Bogomolovas, et al., “PKC phosphorylation of titin's PEVK element: a novel and conserved pathway for modulating myocardial stiffness,” Circulation Research, vol. 105, no. 7, pp. 631–638, 2009. View at Publisher · View at Google Scholar · View at PubMed
  89. B. D. Hudson, C. G. Hidalgo, M. Gotthardt, and H. L. Granzier, “Excision of titin's cardiac PEVK spring element abolishes PKCβ-induced increases in myocardial stiffness,” Journal of Molecular and Cellular Cardiology, vol. 48, no. 5, pp. 972–978, 2010. View at Publisher · View at Google Scholar · View at PubMed
  90. A. F. Leite-Moreira, P. Castro-Chaves, P. Pimentel-Nunes, et al., “Angiotensin II acutely decreases myocardial stiffness: a novel AT1, PKC and Na+/H+ exchanger-mediated effect,” British Journal of Pharmacology, vol. 147, no. 6, pp. 690–697, 2006. View at Publisher · View at Google Scholar · View at PubMed
  91. A. F. Leite-Moreira, C. Bras-Silva, C. A. Pedrosa, and A. A. Rocha-Sousa, “ET-1 increases distensibility of acutely loaded myocardium: a novel ETA and Na+/H+ exchanger-mediated effect,” American Journal of Physiology, vol. 284, no. 4, pp. H1332–H1339, 2003.
  92. J. S. Janicki and B. B. Matsubara, “Myocardial collagen and left ventricular diastolic dysfunction,” in Left Ventricular Diastolic Dysfunction and Heart Failure, W. H. Gaash and M. M. LeWinter, Eds., pp. 3–24, Lea & Febiger, Philadelphia, Pa, USA, 1994.
  93. G. M. Fomovsky, S. Thomopoulos, and J. W. Holmes, “Contribution of extracellular matrix to the mechanical properties of the heart,” Journal of Molecular and Cellular Cardiology, vol. 48, no. 3, pp. 490–496, 2010. View at Publisher · View at Google Scholar · View at PubMed
  94. J. Asbun and F. J. Villarreal, “The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy,” Journal of the American College of Cardiology, vol. 47, no. 4, pp. 693–700, 2006. View at Publisher · View at Google Scholar · View at PubMed
  95. M. R. Zile and D. L. Brutsaert, “New concepts in diastolic dysfunction and diastolic heart failure: part I: diagnosis, prognosis, and measurements of diastolic function,” Circulation, vol. 105, no. 11, pp. 1387–1393, 2002. View at Publisher · View at Google Scholar
  96. W. C. Little, M. R. Zile, D. W. Kitzman, W. G. Hundley, T. X. O'Brien, and R. C. Degroof, “The effect of alagebrium chloride (ALT-711), a novel glucose cross-link breaker, in the treatment of elderly patients with diastolic heart failure,” Journal of Cardiac Failure, vol. 11, no. 3, pp. 191–195, 2005. View at Publisher · View at Google Scholar
  97. Y. Sun and K. T. Weber, “Infarct scar: a dynamic tissue,” Cardiovascular Research, vol. 46, no. 2, pp. 250–256, 2000. View at Publisher · View at Google Scholar
  98. J. W. Holmes, T. K. Borg, and J. W. Covell, “Structure and mechanics of healing myocardial infarcts,” Annual Review of Biomedical Engineering, vol. 7, pp. 223–253, 2005. View at Publisher · View at Google Scholar · View at PubMed
  99. W. J. Paulus, P. J. Vantrimpont, and A. M. Shah, “Acute effects of nitric oxide on left ventricular relaxation and diastolic distensibility in humans: assessment by bicoronary sodium nitroprusside infusion,” Circulation, vol. 89, no. 5, pp. 2070–2078, 1994.
  100. A. M. Shah, B. D. Prendergast, R. Grocott-Mason, M. J. Lewis, and W. J. Paulus, “The influence of endothelium-derived nitric oxide on myocardial contractile function,” International Journal of Cardiology, vol. 50, no. 3, pp. 225–231, 1995. View at Publisher · View at Google Scholar
  101. W. J. Paulus, “Beneficial effects of nitric oxide on cardiac diastolic function: ‘the flip side of the coin’,” Heart Failure Reviews, vol. 5, no. 4, pp. 337–344, 2000. View at Publisher · View at Google Scholar
  102. P. Castro-Chaves, R. Fontes-Carvalho, M. Pintalhao, P. Pimentel-Nunes, and A. F. Leite-Moreira, “Angiotensin II-induced increase in myocardial distensibility and its modulation by the endocardial endothelium in the rabbit heart,” Experimental Physiology, vol. 94, no. 6, pp. 665–674, 2009. View at Publisher · View at Google Scholar · View at PubMed
  103. C. Brás-Silva and A. F. Leite-Moreira, “Obligatory role of the endocardial endothelium in the increase of myocardial distensibility induced by endothelin-1,” Experimental Biology and Medicine, vol. 231, no. 6, pp. 876–881, 2006.
  104. C. Brás-Silva, D. Monteiro-Sousa, A. J. Duarte, et al., “Nitric oxide and prostaglandins—important players in endothelin-1 induced myocardial distensibility,” Physiological Research, vol. 57, no. 2, pp. 165–174, 2008.
  105. A. P. Fontes-Sousa, C. Brás-Silva, A. L. Pires, D. Monteiro-Sousa, and A. F. Leite-Moreira, “Urotensin II acutely increases myocardial length and distensibility: potential implications for diastolic function and ventricular remodeling,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 376, no. 1-2, pp. 107–115, 2007.
  106. A. P. Fontes-Sousa, A. L. Pires, V. F. Monteiro-Cardoso, and A. F. Leite-Moreira, “Urotensin II-induced increase in myocardial distensibility is modulated by angiotensin II and endothelin-1,” Physiological Research, vol. 58, no. 5, pp. 653–660, 2009.
  107. A. P. Fontes-Sousa, A. L. Pires, C. S. Carneiro, C. Brás-Silva, and A. F. Leite-Moreira, “Effects of adrenomedullin on systolic and diastolic myocardial function,” Peptides, vol. 30, no. 4, pp. 796–802, 2009. View at Publisher · View at Google Scholar · View at PubMed
  108. R. Ladeiras-Lopes, J. Ferreira-Martins, and A. F. Leite-Moreira, “Acute neurohumoral modulation of diastolic function,” Peptides, vol. 30, no. 2, pp. 419–425, 2009. View at Publisher · View at Google Scholar · View at PubMed
  109. C. S. Apstein, “Influence of the coronary vasculature on left ventricular diastolic chamber stiffness: the erectile properties of the myocardium,” in Left Ventricular Diastolic Dysfunction and Heart Failure, W. H. Gaash and M. M. LeWinter, Eds., pp. 3–24, Lea & Febiger, Philadelphia, Pa, USA, 1994.