About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 890672, 10 pages
http://dx.doi.org/10.1155/2010/890672
Research Article

Mexican Trypanosoma cruzi (TCI) Strains with Different Degrees of Virulence Induce Diverse Humoral and Cellular Immune Responses in a Murine Experimental Infection Model

1Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, D.F. CP 04510, Mexico
2Laboratorio de Investigación en parasitología, Hospital Infantil de México, Federico Gómez, D.F. CP 06720, Mexico

Received 21 August 2009; Revised 18 November 2009; Accepted 29 December 2009

Academic Editor: Abhay R. Satoskar

Copyright © 2010. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WHO, “Control of chagas disease, second report of WHO expert committee,” Tech. Rep. 905, p. 109, WHO, Geneva, Switzerland, 2002.
  2. C. J. Schofield and J.-P. Dujardin, “Chagas disease vector control in Central America,” Parasitology Today, vol. 13, no. 4, pp. 141–144, 1997. View at Scopus
  3. F. Trujillo Contreras, F. Lozano Kasten, M. M. Soto Gutiérrez, and R. Hernández Gutiérrez, “Prevalencia de infección a Trypanosoma cruzi en donadores de sangre en el Estado de Jalisco, México,” Revista da Sociedade Brasileira de Medicina Tropical, vol. 26, no. 2, pp. 89–92, 1993.
  4. H. Rangel-Flores, B. Sánchez, J. Mendoza-Duarte, et al., “Serologic and parasitologic demonstration of Trypanosoma cruzi infections in an urban area of central Mexico: correlation with electrocardiographic alterations,” American Journal of Tropical Medicine and Hygiene, vol. 65, no. 6, pp. 887–895, 2001. View at Scopus
  5. M. E. Villagrán, M. Sánchez-Moreno, C. Marín, M. Uribe, J. J. de la Cruz, and J. A. de Diego, “Seroprevalence to Trypanosoma cruzi in rural communities of the state of Querétaro (Mexico). Statistical evaluation of tests,” Clinical Biochemistry, vol. 42, no. 1-2, pp. 12–16, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. F. H. Martínez, G. C. Villalobos, A. M. Cevallos, et al., “Taxonomic study of the Phyllosoma complex and other triatomine (Insecta: Hemiptera: Reduviidae) species of epidemiological importance in the transmission of Chagas disease: using ITS-2 and mtCytB sequences,” Molecular Phylogenetics and Evolution, vol. 41, no. 2, pp. 279–287, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. S. A. Kjos, K. F. Snowden, T. M. Craig, B. Lewis, N. Ronald, and J. K. Olson, “Distribution and characterization of canine Chagas disease in Texas,” Veterinary Parasitology, vol. 152, no. 3-4, pp. 249–256, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Click Lambert, K. N. Kolivras, L. M. Resler, C. C. Brewster, and S. L. Paulson, “The potential for emergence of Chagas disease in the United States,” Geospatial Health, vol. 2, no. 2, pp. 227–239, 2008.
  9. B. Zingales, S. G. Andrade, M. R. Machado, et al., “A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends T. cruzi I to TcVI,” Mem Inst Oswaldo Cruz, vol. 104, no. 7, pp. 1051–1054, 2009.
  10. J. M. Di Noia, C. A. Buscaglia, C. R. De Marchi, I. C. Almeida, and A. C. C. Frasch, “A Trypanosoma cruzi small surface molecule provides the first immunological evidence that Chagas' disease is due to a single parasite lineage,” Journal of Experimental Medicine, vol. 195, no. 4, pp. 401–413, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. O. Fernandes, R. H. Mangia, C. V. Lisboa, et al., “The complexity of the sylvatic cycle of Trypanosoma cruzi in Rio de Janeiro state (Brazil) revealed by the non-transcribed spacer of the mini-exon gene,” Parasitology, vol. 118, no. 2, pp. 161–166, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Añez, G. Crisante, F. M. Da Silva, et al., “Predominance of lineage I among Trypanosoma cruzi isolates from Venezuelan patients with different clinical profiles of acute Chagas' disease,” Tropical Medicine and International Health, vol. 9, no. 12, pp. 1319–1326, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. C. L. Black, S. Ocaña, D. Riner, et al., “Household risk factors for Trypanosoma cruzi seropositivity in two geographic regions of Ecuador,” Journal of Parasitology, vol. 93, no. 1, pp. 12–16, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. M. Mejía-Jaramillo, V. H. Peña, and O. Triana-Chávez, “Trypanosoma cruzi: biological characterization of lineages I and II supports the predominance of lineage I in Colombia,” Experimental Parasitology, vol. 121, no. 1, pp. 83–91, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. V. López-Olmos, N. Pérez-Nasser, D. Piñero, E. Ortega, R. Hernandez, and B. Espinoza, “Biological characterization and genetic diversity of Mexican isolates of Trypanosoma cruzi,” Acta Tropica, vol. 69, no. 3, pp. 239–254, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. M.-F. Bosseno, C. Barnabé, E. M. Gastélum, et al., “Predominance of Trypanosoma cruzi lineage I in Mexico,” Journal of Clinical Microbiology, vol. 40, no. 2, pp. 627–632, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Ruíz-Sánchez, M. P. de León, V. Matta, et al., “Trypanosoma cruzi isolates from Mexican and Guatemalan acute and chronic chagasic cardiopathy patients belong to Trypanosoma cruzi I,” Memorias do Instituto Oswaldo Cruz, vol. 100, no. 3, pp. 281–283, 2005. View at Scopus
  18. Z. Brener and R. T. Gazzinelli, “Immunological control of Trypanosoma cruzi infection and pathogenesis of Chagas' disease,” International Archives of Allergy and Immunology, vol. 114, no. 2, pp. 103–110, 1997. View at Scopus
  19. G. A. DosReis, “Cell-mediated immunity in experimental Trypanosoma cruzi infection,” Parasitology Today, vol. 13, no. 9, pp. 335–342, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. J. C. S. Aliberti, M. A. G. Cardoso, G. A. Martins, R. T. Gazzinelli, L. Q. Vieira, and J. S. Silva, “Interleukin-12 mediates resistance to Trypanosoma cruzi in mice and is produced by murine macrophages in response to live trypomastigotes,” Infection and Immunity, vol. 64, no. 6, pp. 1961–1967, 1996. View at Scopus
  21. J. C. S. Aliberti, F. S. Machado, J. T. Souto, et al., “β-Chemokines enhance parasite uptake and promote nitric oxide-dependent microbiostatic activity in murine inflammatory macrophages infected with Trypanosoma cruzi,” Infection and Immunity, vol. 67, no. 9, pp. 4819–4826, 1999. View at Scopus
  22. M. I. Antúnez and R. L. Cardoni, “IL-12 and IFN-γ production, and NK cell activity, in acute and chronic experimental Trypanosoma cruzi infections,” Immunology Letters, vol. 71, no. 2, pp. 103–109, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Talvani, C. S. Ribeiro, J. C. S. Aliberti, et al., “Kinetics of cytokine gene expression in experimental chagasic cardiomyopathy: tissue parasitism and endogenous IFN-γ as important determinants of chemokine mRNA expression during infection with Trypanosoma cruzi,” Microbes and Infection, vol. 2, no. 8, pp. 851–866, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. I. A. Abrahamsohn and R. L. Coffman, “Trypanosoma cruzi: IL-10, TNF, IFN-γ and IL-12 regulate innate and acquired immunity to infection,” Experimental Parasitology, vol. 84, no. 2, pp. 231–244, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. M. M. Rodrigues, M. Ribeirão, and S. B. Boscardin, “CD4 Th1 but not Th2 clones efficiently activate macrophages to eliminate Trypanosoma cruzi through a nitric oxide dependent mechanism,” Immunology Letters, vol. 73, no. 1, pp. 43–50, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Hiyama, S. Hamano, T. Nakamura, K. Nomoto, and I. Tada, “IL-4 reduces resistance of mice to Trypanosoma cruzi infection,” Parasitology Research, vol. 87, no. 4, pp. 269–274, 2001. View at Scopus
  27. J. Sun and R. L. Tarleton, “Predominance of CD8+ T lymphocytes in the inflammatory lesions of mice with acute Trypanosoma cruzi infection,” American Journal of Tropical Medicine and Hygiene, vol. 48, no. 2, pp. 161–169, 1993. View at Scopus
  28. B. Sánchez, V. Monteón, P. A. Reyes, and B. Espinoza, “Standardization of Micro-Enzyme-Linked Immunosorbent Assay (ELISA) and Western blot for detection of Trypanosoma cruzi antibodies using extracts from Mexican strains as Antigens,” Archives of Medical Research, vol. 32, no. 5, pp. 382–388, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, et al., Current Protocols in Immunology, John Wiley & Sons, Someerset, NJ, USA, 2009.
  30. F. S. Machado, G. A. Martins, J. C. S. Aliberti, F. L. A. C. Mestriner, F. Q. Cunha, and J. S. Silva, “Trypanosoma cruzi-infected cardiomyocytes produce chemokines and cytokines that trigger potent nitric oxide-dependent trypanocidal activity,” Circulation, vol. 102, no. 24, pp. 3003–3008, 2000. View at Scopus
  31. W. L. Hays, Statistics, The Dryden Press, New York, NY, USA, 1998.
  32. M. Tibayrenc, “Genetic subdivisions within Trypanosoma cruzi (Discrete Typing Units) and their relevance for molecular epidemiology and experimental evolution,” Kinetoplastid Biology and Disease, vol. 2, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Yeo, N. Acosta, M. Llewellyn, et al., “Origins of Chagas disease: didelphis species are natural hosts of Trypanosoma cruzi I and armadillos hosts of Trypanosoma cruzi II, including hybrids,” International Journal for Parasitology, vol. 35, no. 2, pp. 225–233, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. A. R. Vago, L. O. Andrade, A. A. Leite, et al., “Genetic characterization of Trypanosoma cruzi directly from tissues of patients with chronic chagas disease: differential distribution of genetic types into diverse organs,” American Journal of Pathology, vol. 156, no. 5, pp. 1805–1809, 2000. View at Scopus
  35. A. M. Macedo, C. R. Machado, R. P. Oliveira, and S. D. J. Pena, “Trypanosoma cruzi: genetic structure of populations and relevance of genetic variability to the pathogenesis of chagas disease,” Memorias do Instituto Oswaldo Cruz, vol. 99, no. 1, pp. 1–12, 2004. View at Scopus
  36. D. F. Hoft, A. R. Schnapp, C. S. Eickhoff, and S. T. Roodman, “Involvement of CD4+ Th1 cells in systemic immunity protective against primary and secondary challenges with Trypanosoma cruzi,” Infection and Immunity, vol. 68, no. 1, pp. 197–204, 2000. View at Scopus
  37. E. Garzon, F. Genna, M. F. Bosseno, et al., “Differential infectivity and immunopathology in murine experimental infections by two natural clones belonging to the Trypanosoma cruzi I lineage,” Parasitology, vol. 131, no. 1, pp. 109–119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. P. V. A. dos Santos, E. Roffê, H. C. Santiago, et al., “Prevalence of CD8+αβ T cells in Trypanosoma cruzi-elicited myocarditis is associated with acquisition of CD62LLowLFA-1HighVLA-4High activation phenotype and expression of IFN-γ-inducible adhesion and chemoattractant molecules,” Microbes and Infection, vol. 3, no. 12, pp. 971–984, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. M. M. Teixeira, R. T. Gazzinelli, and J. S. Silva, “Chemokines, inflammation and Trypanosoma cruzi infection,” Trends in Parasitology, vol. 18, no. 6, pp. 262–265, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. F. Tzelepis, P. M. Persechini, and M. M. Rodrigues, “Modulation of CD4+ T cell-dependent specific cytotoxic CD8+ T cells differentiation and proliferation by the timing of increase in the pathogen load,” PLoS ONE, vol. 2, no. 4, article e393, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Padilla, D. Xu, D. Martin, and R. Tarleton, “Limited role for CD4+ T-cell help in the initial priming of Trypanosoma cruzi-specific CD8+ T cells,” Infection and Immunity, vol. 75, no. 1, pp. 231–235, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. A. M. Padilla, J. M. Bustamante, and R. L. Tarleton, “CD8+ T cells in Trypanosoma cruzi infection,” Current Opinion in Immunology, vol. 21, no. 4, pp. 385–390, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. F. Villalta, Y. Zhang, K. E. Bibb, J. C. Kappes, and M. F. Lima, “The cysteine-cysteine family of chemokines RANTES, MIP-1α, and MIP-1β induce trypanocidal activity in human macrophages via nitric oxide,” Infection and Immunity, vol. 66, no. 10, pp. 4690–4695, 1998. View at Scopus
  44. J. C. S. Aliberti, J. T. Souto, A. P. M. P. Marino, et al., “Modulation of chemokine production and inflammatory responses in interferon-γ- and tumor necrosis factor-R1-deficient mice during Trypanosoma cruzi infection,” American Journal of Pathology, vol. 158, no. 4, pp. 1433–1440, 2001. View at Scopus
  45. A. Talvani, C. S. Ribeiro, J. C. S. Aliberti, et al., “Kinetics of cytokine gene expression in experimental chagasic cardiomyopathy: tissue parasitism and endogenous IFN-γ as important determinants of chemokine mRNA expression during infection with Trypanosoma cruzi,” Microbes and Infection, vol. 2, no. 8, pp. 851–866, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. H. A. Takehara, A. Perini, M. H. da Silva, and I. Mota, “Trypanosoma cruzi: role of different antibody classes in protection against infection in the mouse,” Experimental Parasitology, vol. 52, no. 1, pp. 137–146, 1981. View at Scopus
  47. M. R. Powell and D. L. Wassom, “Host genetics and resistance to acute Trypanosoma cruzi infection in mice. I. Antibody isotype profiles,” Parasite Immunology, vol. 15, no. 4, pp. 215–221, 1993. View at Scopus
  48. D. M. dos Santos, A. Talvani, P. M. da Mata Guedes, G. L. L. Machado-Coelho, M. de Lana, and M. T. Bahia, “Trypanosoma cruzi: genetic diversity influences the profile of immunoglobulins during experimental infection,” Experimental Parasitology, vol. 121, no. 1, pp. 8–14, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Parrino, R. S. Hotchkiss, and M. Bray, “Prevention of immune cell apoptosis as potential therapeutic strategy for severe infections,” Emerging Infectious Diseases, vol. 13, no. 2, pp. 191–198, 2007. View at Scopus
  50. S. M. van Schaik and A. K. Abbas, “Role of T cells in a murine model of Escherichia coli sepsis,” European Journal of Immunology, vol. 37, no. 11, pp. 3101–3110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. C. M. Lezama-Davila and A. P. Isaac-Marquez, “Systemic cytokine response in humans with chiclero's ulcers,” Parasitology Research, vol. 99, no. 5, pp. 546–553, 2006. View at Publisher · View at Google Scholar · View at Scopus