About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 890674, 15 pages
http://dx.doi.org/10.1155/2010/890674
Research Article

Detection of the Endosomal Sorting Complex Required for Transport in Entamoeba histolytica and Characterization of the EhVps4 Protein

1Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, CP 07360, Mexico
2Departamento de Modelos Experimentales de Enfermedades Humanas, Instituto de Investigaciones Biomédicas CSIC-UAM, Madrid, CP 28029, Spain
3Universidad Autónoma de la Ciudad de México, Posgrado en Ciencias Genómicas, México, CP 03100, Mexico
4Escuela Nacional de Medicina y Homeopatía del IPN, Programa Institucional de Biomedicina Molecular, México, CP 07320, Mexico

Received 23 September 2009; Revised 1 March 2010; Accepted 1 March 2010

Academic Editor: Abhay R. Satoskar

Copyright © 2010 Israel López-Reyes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. D. Abd-Alla, T. F. H. G. Jackson, S. Reddy, and J. I. Ravdin, “Diagnosis of invasive amebiasis by enzyme-linked immunosorbent assay of saliva to detect amebic lectin antigen and anti-lectin immunoglobulin G antibodies,” Journal of Clinical Microbiology, vol. 38, no. 6, pp. 2344–2347, 2000. View at Scopus
  2. M. A. Rodríguez, R. M. García-Pérez, G. García-Rivera, et al., “An Entamoeba histolytica Rab-like encoding gene and protein: function and cellular location,” Molecular and Biochemical Parasitology, vol. 108, no. 2, pp. 199–206, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Marion, C. Laurent, and N. Guillén, “Signalization and cytoskeleton activity through myosin IB during the early steps of phagocytosis in Entamoeba histolytica: a proteomic approach,” Cellular Microbiology, vol. 7, no. 10, pp. 1504–1518, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. K. Nakada-Tsukui, Y. Saito-Nakano, V. Ali, and T. Nozaki, “A retromerlike complex is a novel Rab7 effector that is involved in the transport of the virulence factor cysteine protease in the enteric protozoan parasite Entamoeba histolytica,” Molecular Biology of the Cell, vol. 16, no. 11, pp. 5294–5303, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. W. de Souza, C. Sant'Anna, and N. L. Cunha-e-Silva, “Electron microscopy and cytochemistry analysis of the endocytic pathway of pathogenic protozoa,” Progress in Histochemistry and Cytochemistry, vol. 44, no. 2, pp. 67–124, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. J. H. Hurley and S. D. Emr, “The ESCRT complexes: structure and mechanism of a membrane-trafficking network,” Annual Review of Biophysics and Biomolecular Structure, vol. 35, pp. 277–298, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. R. L. Williams and S. Urbé, “The emerging shape of the ESCRT machinery,” Nature Reviews Molecular Cell Biology, vol. 8, no. 5, pp. 355–368, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. T. E. Rusten and H. Stenmark, “How do ESCRT proteins control autophagy?” Journal of Cell Science, vol. 122, no. 13, pp. 2179–2183, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. C. K. Raymond, I. Howald-Stevenson, C. A. Vater, and T. H. Stevens, “Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants,” Molecular Biology of the Cell, vol. 3, no. 12, pp. 1389–1402, 1992. View at Scopus
  10. T. Wollert, D. Yang, X. Ren, H. H. Lee, Y. J. Im, and J. H. Hurley, “The ESCRT machinery at a glance,” Journal of Cell Science, vol. 122, no. 13, pp. 2163–2166, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. D. J. Katzmann, M. Babst, and S. D. Emr, “Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I,” Cell, vol. 106, no. 2, pp. 145–155, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Curtiss, C. Jones, and M. Babst, “Efficient cargo sorting by ESCRT-I and the subsequent release of ESCRT-I from multivesicular bodies requires the subunit Mvb12,” Molecular Biology of the Cell, vol. 18, no. 2, pp. 636–645, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. M. Babst, D. J. Katzmann, W. B. Snyder, B. Wendland, and S. D. Emr, “Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body,” Developmental Cell, vol. 3, no. 2, pp. 283–289, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Babst, D. J. Katzmann, E.J. Estepa-Sabal, T. Meerloo, and S. D. Emr, “ESCRT-III: an endosome-associated heterooligomeric protein complex required for MVB sorting,” Developmental Cell, vol. 3, no. 2, pp. 271–282, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Odorizzi, D. J. Katzmann, M. Babst, A. Audhya, and S. D. Emr, “Bro1 is an endosome-associated protein that functions in the MVB pathway in Saccharomyces cerevisiae,” Journal of Cell Science, vol. 116, no. 10, pp. 1893–1903, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. J. Kim, S. Sitaraman, A. Hierro, B. M. Beach, G. Odorizzi, and J. H. Hurley, “Structural basis for endosomal targeting by the Bro1 domain,” Developmental Cell, vol. 8, no. 6, pp. 937–947, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. N. Luhtala and G. Odorizzi, “Bro1 coordinates deubiquitination in the multivesicular body pathway by recruiting Doa4 to endosomes,” The Journal of Cell Biology, vol. 166, no. 5, pp. 717–729, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. M. Babst, T. K. Sato, L. M. Banta, and S. D. Emr, “Endosomal transport function in yeast requires a novel AAA-type ATPase, Vps4p,” The EMBO Journal, vol. 16, no. 8, pp. 1820–1831, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. P. I. Hanson and S. W. Whiteheart, “AAA+ proteins: have engine, will work,” Nature Reviews Molecular Cell Biology, vol. 6, no. 7, pp. 519–529, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. M. Finken-Eigen, R. A. Rohricht, and K. Kohrer, “The VPS4 gene is involved in protein transport out of a yeast pre-vacuolar endosome-like compartment,” Current Genetics, vol. 31, no. 6, pp. 469–480, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Yoshimori, F. Yamagata, A. Yamamoto, et al., “The mouse SKD1, a homologue of yeast Vps4p, is required for normal endosomal trafficking and morphology in mammalian cells,” Molecular Biology of the Cell, vol. 11, no. 2, pp. 747–763, 2000. View at Scopus
  22. T. J. Haas, M. K. Sliwinski, D. E. Martínez, et al., “The Arabidopsis AAA ATPase SKD1 is involved in multivesicular endosome function and interacts with its positive regulator LYST-INTERACTING PROTEIN5,” The Plant Cell, vol. 19, no. 4, pp. 1295–1312, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. M. Okada and T. Nozaki, “New insights into molecular mechanisms of phagocytosis in Entamoeba histolytica by proteomic analysis,” Archives of Medical Research, vol. 37, no. 2, pp. 244–252, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. M. Okada, C. D. Huston, B. J. Mann, W. A. Petri Jr., K. Kita, and T. Nozaki, “Proteomic analysis of phagocytosis in the enteric protozoan parasite Entamoeba histolytica,” Eukaryotic Cell, vol. 4, no. 4, pp. 827–831, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. M. Okada, C. D. Huston, M. Oue, et al., “Kinetics and strain variation of phagosome proteins of Entamoeba histolytica by proteomic analysis,” Molecular and Biochemical Parasitology, vol. 145, no. 2, pp. 171–183, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. C. Bañuelos, I. López-Reyes, G. García-Rivera, A. González-Robles, and E. Orozco, “The presence of a Snf7-like protein strenghtens a role for EhADH in the Entamoeba histolytica multivesicular bodies pathway,” in Proceedings of the 5th European Congress on Tropical Medicine and International Health, M. J. Boeree, Ed., vol. 978, pp. 31–35, Amsterdam, The Netherlands, May 2007, PP-292.
  27. C. Bañuelos, G. García-Rivera, I. López-Reyes, and E. Orozco, “Functional characterization of EhADH112: an Entamoeba histolytica Bro1 domain-containing protein,” Experimental Parasitology, vol. 110, no. 3, pp. 292–297, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. N. Saitou and M. Nei, “The neighbor-joining method: a new method for reconstructing phylogenetic trees,” Molecular Biology and Evolution, vol. 4, no. 4, pp. 406–425, 1987. View at Scopus
  29. S. Kumar, K. Tamura, and M. Nei, “MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment,” Briefings in Bioinformatics, vol. 5, no. 2, pp. 150–163, 2004. View at Scopus
  30. L. S. Diamond, D. R. Harlow, and C. C. Cunnick, “A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 72, no. 4, pp. 431–432, 1978. View at Scopus
  31. Student, “The probable error of a mean,” Biometrika, vol. 6, pp. 1–25, 1908.
  32. Ch. Avila, B. A. Kornilayev, and B. S. J. Blagg, “Development and optimization of a useful assay for determining Hsp90's inherent ATPase activity,” Bioorganic and Medicinal Chemistry, vol. 14, no. 4, pp. 1134–1142, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. L. Hamann, R. Nickel, and E. Tannich, “Transfection and continuous expression of heterologous genes in the protozoan parasite Entamoeba histolytica,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 19, pp. 8975–8979, 1995. View at Publisher · View at Google Scholar · View at Scopus
  34. M.-K. Sung, C. W. Ha, and W.-K. Huh, “A vector system for efficient and economical switching of C-terminal epitope tags in Saccharomyces cerevisiae,” Yeast, vol. 25, no. 4, pp. 301–311, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. E. Orozco, A. Martínez-Palomo, and R. López-Revilla, “An in vitro model for the quantitative study of the virulence of Entamoeba histolytica,” Archivos de Investigación Médica, vol. 9, supplement 1, pp. 257–260, 1978.
  36. R. Bracha and D. Mirelman, “Virulence of Entamoeba histolytica trophozoites. Effects of bacteria, microaerobic conditions, and metronidazole,” The Journal of Experimental Medicine, vol. 160, no. 2, pp. 353–368, 1984. View at Scopus
  37. E. Orozco, G. Guarneros, A. Martínez-Palomo, and T. Sánchez, “Entamoeba histolytica. Phagocytosis as a virulence factor,” The Journal of Experimental Medicine, vol. 158, no. 5, pp. 1511–1521, 1983. View at Scopus
  38. V. Tsutsumi, R. Mena-López, F. Anaya-Velázquez, and A. Martínez-Palomo, “Cellular bases of experimental amebic liver abscess formation,” American Journal of Pathology, vol. 117, no. 1, pp. 81–91, 1984. View at Scopus
  39. J. H. Hurley and D. Yang, “MIT domainia,” Developmental Cell, vol. 14, no. 1, pp. 6–8, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. J. Xiao, H. Xia, J. Zhou, et al., “Structural basis of Vta1 function in the multivesicular body sorting pathway,” Developmental Cell, vol. 14, no. 1, pp. 37–49, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. B. Loftus, I. Anderson, R. Davies, et al., “The genome of the protist parasite Entamoeba histolytica,” Nature, vol. 433, no. 7028, pp. 865–868, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. M. Babst, B. Wendland, E. J. Estepa, and S. D. Emr, “The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function,” The EMBO Journal, vol. 17, no. 11, pp. 2982–2993, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. I. Meza and M. Clarke, “Dynamics of endocytic traffic of Entamoeba histolytica revealed by confocal microscopy and flow cytometry,” Cell Motility and the Cytoskeleton, vol. 59, no. 4, pp. 215–226, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. J. Santi-Rocca, C. Weber, G. Guigon, O. Sismeiro, J.-Y. Coppée, and N. Guillén, “The lysine- and glutamic acid-rich protein KERP1 plays a role in Entamoeba histolytica liver abscess pathogenesis,” Cellular Microbiology, vol. 10, no. 1, pp. 202–217, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. J. B. Vicente, G. M. Ehrenkaufer, L. M. Saraiva, M. Teixeira, and U. Singh, “Entamoeba histolytica modulates a complex repertoire of novel genes in response to oxidative and nitrosative stresses: implications for amebic pathogenesis,” Cellular Microbiology, vol. 11, no. 1, pp. 51–69, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. A. Sillo, G. Bloomfield, A. Balest, et al., “Genome-wide transcriptional changes induced by phagocytosis or growth on bacteria in Dictyostelium,” BMC Genomics, vol. 9, article 291, 2008. View at Publisher · View at Google Scholar · View at PubMed
  47. O. V. Vieira, R. E. Harrison, C. C. Scott, et al., “Acquisition of Hrs, an essential component of phagosomal maturation, is impaired by mycobacteria,” Molecular and Cellular Biology, vol. 24, no. 10, pp. 4593–4604, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Sachse, G. J. Strous, and J. Klumperman, “ATPase-deficient hVPS4 impairs formation of internal endosomal vesicles and stabilizes bilayered clathrin coats on endosomal vacuoles,” Journal of Cell Science, vol. 117, no. 9, pp. 1699–1708, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. N. Bishop and P. Woodman, “ATPase-defective mammalian VPS4 localizes to aberrant endosomes and impairs cholesterol trafficking,” Molecular Biology of the Cell, vol. 11, no. 1, pp. 227–239, 2000. View at Scopus
  50. S. Scheuring, R. A. Rohricht, B. Schoning-Burkhardt, et al., “Mammalian cells express two VPS4 proteins both of which are involved in intracellular protein trafficking,” Journal of Molecular Biology, vol. 312, no. 3, pp. 469–480, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. A. Beyer, S. Scheuring, S. Muller, A. Mincheva, P. Lichter, and K. Kohrer, “Comparative sequence and expression analyses of four mammalian VPS4 genes,” Gene, vol. 305, no. 1, pp. 47–59, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Besteiro, R. A. M. Williams, L. S. Morrison, G. H. Coombs, and J. C. Mottram, “Endosome sorting and autophagy are essential for differentiation and virulence of Leishmania major,” The Journal of Biological Chemistry, vol. 281, no. 16, pp. 11384–11396, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. M. Yang, I. Coppens, S. Wormsley, P. Baevova, H. C. Hoppe, and K. A. Joiner, “The Plasmodium falciparum Vps4 homolog mediates multivesicular body formation,” Journal of Cell Science, vol. 117, no. 17, pp. 3831–3838, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. T. Irie, N. Nagata, T. Yoshida, and T. Sakaguchi, “Recruitment of Alix/AIP1 to the plasma membrane by Sendai virus C protein facilitates budding of virus-like particles,” Virology, vol. 371, no. 1, pp. 108–120, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. G. García-Rivera, M. A. Rodríguez, R. Ocádiz, et al., “Entamoeba histolytica: a novel cysteine protease and an adhesin form the 112 kDa surface protein,” Molecular Microbiology, vol. 33, no. 3, pp. 556–568, 1999. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Fujita, M. Yamanaka, K. Imamura, et al., “A dominant negative form of the AAA ATPase SKD1/VPS4 impairs membrane trafficking out of endosomal/lysosomal compartments: class E vps phenotype in mammalian cells,” Journal of Cell Science, vol. 116, no. 2, pp. 401–414, 2003. View at Publisher · View at Google Scholar · View at Scopus