About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 894971, 6 pages
Research Article

Triggering DTH and CTL Activity by fd Filamentous Bacteriophages: Role of CD4+ T Cells in Memory Responses

1Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, Via P. Castellino 111, 80131 Naples, Italy
2Institute of Protein Biochemistry, CNR, Via P. Castellino 111, 80131 Naples, Italy

Received 20 November 2009; Revised 4 February 2010; Accepted 13 February 2010

Academic Editor: Kim Klonowski

Copyright © 2010 Giovanna Del Pozzo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Greenwood, A. E. Willis, and R. N. Perham, “Multiple display of foreign peptides on a filamentous bacteriophage: peptides from Plasmodium falciparum circumsporozoite protein as antigens,” Journal of Molecular Biology, vol. 220, no. 4, pp. 821–827, 1991. View at Scopus
  2. R. Jelinek, T. D. Terry, J. J. Gesell, P. Malik, R. N. Perham, and J. J. Opella, “NMR structure of the principal neutralizing determinant of HIV-1 displayed in filamentous bacteriophage coat protein,” Journal of Molecular Biology, vol. 266, no. 4, pp. 649–655, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Gaubin, C. Fanutti, A. Durrbach, et al., “Processing by APC of filamentous phage displaying antigenic epitopes targets to both HLA class I and class II peptide loading compartments,” DNA Cell Biology, vol. 22, no. 1, pp. 11–18, 2003.
  4. P. De Berardinis, R. Sartorius, C. Fanutti, R. N. Perham, G. Del Pozzo, and J. Guardiola, “Phage display of peptide epitopes from HIV-1 elicits strong cytolytic responses in vitro and in vivo,” Nature Biotechnology, vol. 18, no. 8, pp. 873–876, 2000.
  5. R. Sartorius, P. Pisu, L. D'Apice, et al., “The use of filamentous bacteriophage fd to deliver MAGE-A10 or MAGE-A3 HLA-A2 restricted peptides and to induce strong anti-tumor CTL responses,” Journal of Immunology, vol. 108, no. 6, pp. 3719–3728, 2008.
  6. D. Mascolo, P. Barba, P. De Berardinis, F. Di Rosa, and G. Del Pozzo, “Phage display of a CTL epitope elicits a long-term in vivo cytotoxic response,” FEMS Immunology and Medical Microbiology, vol. 50, no. 1, pp. 59–66, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Malik and R. N. Perham, “New vectors for peptide display on the surface of filamentous bacteriophage,” Gene, vol. 171, no. 1, pp. 49–51, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. J. C. Rice and R. P. Bucy, “Differences in the degree of depletion, rate of recovery and the preferential elimination of naïve CD4+ T cells by anti-CD4 monoclonal antibody (GK1.5) in young and aged mice,” The Journal of Immunology, vol. 154, no. 12, pp. 6644–6654, 1995.
  9. P. Matzinger, “The JAM test. A simple assay for DNA fragmentation and cell death,” Journal of Immunological Methods, vol. 145, no. 1-2, pp. 185–192, 1991. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Sulakvelidze, Z. Alavidze, and J. G. Morris, “Bacteriophage therapy,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 3, pp. 649–659, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. J. R. Clark and J. B. March, “Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials,” Trends in Biotechnology, vol. 24, no. 5, pp. 212–218, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Trepel, W. Arap, and R. Pasqualini, “In vivo phage display and vascular heterogeneity: implications for targeted medicine,” Current Opinion in Chemical Biology, vol. 6, no. 3, pp. 399–404, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Fang, G. Wang, Q. Yang, J. Song, Y. Wang, and L. Wang, “The potential of phage display virions expressing malignant tumor specific antigen MAGE-A1 epitope in murine model,” Vaccine, vol. 23, no. 40, pp. 4860–4866, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. G. A. Waanders, D. Rimoldi, D. Lienard, et al., “Melanoma-reactive human cytotoxic T lymphocytes derived from skin biopsies of delayed-type hypersensitivity reactions induced by injection of an autologous melanoma cell line,” Clinical Cancer Research, vol. 3, no. 5, pp. 685–696, 1997. View at Scopus
  15. M. T. Clay, A. C. Obeika, P. J. Mosca, H. K. Lyerly, and M. A. Morse, “Assays for monitoring cellular immune responses to active immunotherapy of cancer,” Clinical Cancer Research, vol. 7, no. 5, pp. 1127–1135, 2001. View at Scopus
  16. F. M. Gordin, P. M. Hartigan, N. G. Klimas, S. B. Zolla-Pazner, M. S. Simberkoff, and J. D. Hamilton, “Delayed-type hypersensitivity skin tests are an independent predictor of human immunodeficiency virus disease progression. Department of Veterans Affairs Cooperative Study Group,” Journal of Infectious Diseases, vol. 169, no. 4, pp. 893–897, 1994.
  17. E. M. Janssen, E. E. Lemmens, T. Wolfe, U. Christen, M. G. Von Herrath, and S. P. Schoenberger, “CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes,” Nature, vol. 421, no. 6925, pp. 852–856, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Akira and K. Takeda, “Toll-like receptor signalling,” Nature Reviews Immunology, vol. 4, no. 7, pp. 499–511, 2004. View at Scopus
  19. F. Granucci, I. Zanoni, S. Feau, and P. Ricciardi-Castagnoli, “Dendritic cell regulation of immune responses: a new role for interleukin 2 at the intersection of innate and adaptive immunity,” EMBO Journal, vol. 22, no. 11, pp. 2546–2551, 2003. View at Publisher · View at Google Scholar · View at Scopus