About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 165214, 7 pages
http://dx.doi.org/10.1155/2011/165214
Review Article

Mechanisms of Resistance to EGFR TKIs and Development of a New Generation of Drugs in Non-Small-Cell Lung Cancer

Department of General Surgical Science, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan

Received 19 January 2011; Accepted 11 April 2011

Academic Editor: Dominic Fan

Copyright © 2011 Takayuki Kosaka et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. G. Kris, R. B. Natale, R. S. Herbst et al., “Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial,” Journal of the American Medical Association, vol. 290, no. 16, pp. 2149–2158, 2003. View at Google Scholar
  2. M. Fukuoka, S. Yano, G. Giaccone, et al., “Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected],” Journal of Clinical Oncology, vol. 21, no. 12, pp. 2237–2246, 2003. View at Google Scholar
  3. J. G. Paez, P. A. Jänne, J. C. Lee et al., “EGFR mutations in lung, cancer: correlation with clinical response to gefitinib therapy,” Science, vol. 304, no. 5676, pp. 1497–1500, 2004. View at Google Scholar
  4. T. J. Lynch, D. W. Bell, R. Sordella et al., “Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib,” New England Journal of Medicine, vol. 350, no. 21, pp. 2129–2139, 2004. View at Google Scholar
  5. W. Pao, V. Miller, M. Zakowski et al., “EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 36, pp. 13306–13311, 2004. View at Google Scholar
  6. T. Mitsudomi and Y. Yatabe, “Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer,” Cancer Science, vol. 98, no. 12, pp. 1817–1824, 2007. View at Google Scholar
  7. T. S. Mok, Y. L. Wu, S. Thongprasert et al., “Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma,” New England Journal of Medicine, vol. 361, no. 10, pp. 947–957, 2009. View at Google Scholar
  8. T. Mitsudomi, S. Morita, Y. Yatabe et al., “Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial,” Lancet Oncology, vol. 11, no. 2, pp. 121–128, 2010. View at Google Scholar
  9. M. Maemondo, A. Inoue, K. Kobayashi et al., “Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR,” New England Journal of Medicine, vol. 362, no. 25, pp. 2380–2388, 2010. View at Google Scholar
  10. H. Greulich, T. H. Chen, W. Feng et al., “Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants,” PLoS Medicine, vol. 2, no. 11, p. e313, 2005. View at Google Scholar
  11. J. Y. Wu, S. G. Wu, C. H. Yang et al., “Lung cancer with epidermal growth factor receptor exon 20 mutations is associated with poor gefitinib treatment response,” Clinical Cancer Research, vol. 14, no. 15, pp. 4877–4882, 2008. View at Google Scholar
  12. W. Pao, T. Y. Wang, G. J. Riely et al., “KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib,” PLoS Medicine, vol. 2, p. e17, 2005. View at Google Scholar
  13. S. Yano, “Studies for mechanism of drug resistance to EGFR-TKI,” Gan To Kagaku Ryoho, vol. 37, no. 8, pp. 1463–1466, 2010. View at Google Scholar
  14. S. Kobayashi, T. J. Boggon, T. Dayaram et al., “EGFR mutation and resistance of non-small-cell lung cancer to gefitinib,” New England Journal of Medicine, vol. 352, no. 8, pp. 786–792, 2005. View at Google Scholar
  15. W. Pao, V. A. Miller, K. A. Politi et al., “Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain,” PLoS Medicine, vol. 2, no. 3, p. e73, 2005. View at Google Scholar
  16. E. L. Kwak, R. Sordella, D. W. Bell et al., “Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 21, pp. 7665–7670, 2005. View at Google Scholar
  17. C. H. Yun, K. E. Mengwasser, A. V. Toms et al., “The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 6, pp. 2070–2075, 2008. View at Google Scholar
  18. M. Deininger, E. Buchdunger, and B. J. Druker, “The development of imatinib as a therapeutic agent for chronic myeloid leukemia,” Blood, vol. 105, no. 7, pp. 2640–2653, 2005. View at Google Scholar
  19. C. R. Antonescu, P. Besmer, T. Guo et al., “Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutatio,” Clinical Cancer Research, vol. 11, no. 11, pp. 4182–4190, 2005. View at Google Scholar
  20. S. Blencke, A. Ullrich, and H. Daub, “Mutation of threonine 766 in the epidermal growth factor receptor reveals a hotspot for resistance formation against selective tyrosine kinase inhibitors,” Journal of Biological Chemistry, vol. 278, no. 17, pp. 15435–15440, 2003. View at Google Scholar
  21. M. Azam, M. A. Seeliger, N. S. Gray, J. Kuriyan, and G. Q. Daley, “Activation of tyrosine kinases by mutation of the gatekeeper threonine,” Nature Structural and Molecular Biology, vol. 15, no. 10, pp. 1109–1118, 2008. View at Google Scholar
  22. M. N. Balak, Y. Gong, G. J. Riely et al., “Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors,” Clinical Cancer Research, vol. 12, no. 21, pp. 6494–6501, 2006. View at Google Scholar
  23. T. Kosaka, Y. Yatabe, H. Endoh et al., “Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib,” Clinical Cancer Research, vol. 12, no. 19, pp. 5764–5769, 2006. View at Google Scholar
  24. J. A. Engelman, K. Zejnullahu, T. Mitsudomi et al., “MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling,” Science, vol. 316, no. 5827, pp. 1039–1043, 2007. View at Google Scholar
  25. M. Inukai, S. Toyooka, S. Ito et al., “Presence of epidermal growth factor receptor gene T790M mutation as a minor clone in non-small cell lung cancer,” Cancer Research, vol. 66, no. 16, pp. 7854–7858, 2006. View at Google Scholar
  26. S. Maheswaran, L. V. Sequist, S. Nagrath et al., “Detection of mutations in EGFR in circulating lung-cancer cells,” New England Journal of Medicine, vol. 359, no. 4, pp. 366–377, 2008. View at Google Scholar
  27. C. Roche-Lestienne, V. Soenen-Cornu, N. Grardel-Duflos et al., “Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment,” Blood, vol. 100, no. 3, pp. 1014–1018, 2002. View at Google Scholar
  28. W. K. Hofmann, M. Komor, B. Wassmann et al., “Presence of the BCR-ABL mutation Glu255Lys prior to STI571 (imatinib) treatment in patients with Ph+ acute lymphoblastic leukemia,” Blood, vol. 102, no. 2, pp. 659–661, 2003. View at Google Scholar
  29. S. Toyooka, K. Kiura, T. Mitsudomi, S. Kobayashi, D. G. Tenen, and B. Halmos, “EGFR mutation and response of lung cancer to gefitinib,” New England Journal of Medicine, vol. 352, no. 20, p. 2136, 2005. View at Google Scholar
  30. J. Y. Shih, C. H. Gow, and P. C. Yang, “EGFR mutation conferring primary resistance to gefitinib in non-small-cell lung cancer,” New England Journal of Medicine, vol. 353, no. 2, pp. 207–208, 2005. View at Google Scholar
  31. D. W. Bell, I. Gore, R. A. Okimoto et al., “Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR,” Nature Genetics, vol. 37, no. 12, pp. 1315–1316, 2005. View at Google Scholar
  32. H. Vikis, M. Sato, M. James et al., “EGFR-T790M is a rare lung cancer susceptibility allele with enhanced kinase activity,” Cancer Research, vol. 67, no. 10, pp. 4665–4670, 2007. View at Google Scholar
  33. R. Mulloy, A. Ferrand, Y. Kim et al., “Epidermal growth factor receptor mutants from human lung cancers exhibit enhanced catalytic activity and increased sensitivity to gefitinib,” Cancer Research, vol. 67, no. 5, pp. 2325–2330, 2007. View at Google Scholar
  34. N. Godin-Heymann, I. Bryant, M. N. Rivera et al., “Oncogenic activity of epidermal growth factor receptor kinase mutant alleles is enhanced by the T790M drug resistance mutation,” Cancer Research, vol. 67, no. 15, pp. 7319–7326, 2007. View at Google Scholar
  35. J. Bean, C. Brennan, J. Y. Shih et al., “MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 52, pp. 20932–20937, 2007. View at Google Scholar
  36. K. Okuda, H. Sasaki, H. Yukiue, M. Yano, and Y. Fuj II, “Met gene copy number predicts the prognosis for completely resected non-small cell lung cancer,” Cancer Science, vol. 99, no. 11, pp. 2280–2285, 2008. View at Google Scholar
  37. R. Onozato, T. Kosaka, H. Kuwano, Y. Sekido, Y. Yatabe, and T. Mitsudomi, “Activation of MET by gene amplification or by splice mutations deleting the juxtamembrane domain in primary resected lung cancers,” Journal of Thoracic Oncology, vol. 4, no. 1, pp. 5–11, 2009. View at Google Scholar
  38. T. Kubo, H. Yamamoto, W. W. Lockwood et al., “MET gene amplification or EGFR mutation activate MET in lung cancers untreated with EGFR tyrosine kinase inhibitors,” International Journal of Cancer, vol. 124, no. 8, pp. 1778–1784, 2009. View at Google Scholar
  39. M. Beau-Faller, A. M. Ruppert, A. C. Voegeli et al., “MET gene copy number in non-small cell lung cancer: molecular analysis in a targeted tyrosine kinase inhibitor naïve cohort,” Journal of Thoracic Oncology, vol. 3, no. 4, pp. 331–339, 2008. View at Google Scholar
  40. A. B. Turke, K. Zejnullahu, Y. L. Wu et al., “Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC,” Cancer Cell, vol. 17, no. 1, pp. 77–88, 2010. View at Google Scholar
  41. S. Yano, W. Wang, QI. Li et al., “Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations,” Cancer Research, vol. 68, no. 22, pp. 9479–9487, 2008. View at Google Scholar
  42. T. Onitsuka, H. Uramoto, N. Nose et al., “Acquired resistance to gefitinib: the contribution of mechanisms other than the T790M, MET, and HGF status,” Lung Cancer, vol. 68, no. 2, pp. 198–203, 2010. View at Google Scholar
  43. D. B. Costa, B. Halmos, A. Kumar et al., “BIM mediates EGFR tyrosine kinase inhibitor-induced apoptosis in lung cancers with oncogenic EGFR mutations,” PLoS Medicine, vol. 4, no. 10, pp. 1669–1680, 2007. View at Google Scholar
  44. J. Bean, G. J. Riely, M. Balak et al., “Acquired resistance to epidermal growth factor receptor kinase inhibitors associated with a novel T854A mutation in a patient with EGFR-mutant lung adenocarcinoma,” Clinical Cancer Research, vol. 14, no. 22, pp. 7519–7525, 2008. View at Google Scholar
  45. M. Guix, A. C. Faber, S. E. Wang et al., “Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins,” Journal of Clinical Investigation, vol. 118, no. 7, pp. 2609–2619, 2008. View at Google Scholar
  46. L. V. Sequist, B. Besse, T. J. Lynch, et al., “Neratinib, an irreversible pan-ErbB receptor tyrosine kinase inhibitor: results of a phase II trial in patients with advanced non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 28, no. 18, pp. 3076–3083, 2010. View at Google Scholar
  47. K. K. Wong, P. M. Fracasso, R. M. Bukowski et al., “A phase I study with neratinib (HKI-272), an irreversible pan ErbB receptor tyrosine kinase inhibitor, in patients with solid tumors,” Clinical Cancer Research, vol. 15, no. 7, pp. 2552–2558, 2009. View at Google Scholar
  48. F. A. Eskens, C. H. Mom, A. S. Planting et al., “A phase I dose escalation study of BIBW 2992, an irreversible dual inhibitor of epidermal growth factor receptor 1 (EGFR) and 2 (HER2) tyrosine kinase in a 2-week on, 2-week off schedule in patients with advanced solid tumours,” British Journal of Cancer, vol. 98, no. 1, pp. 80–85, 2008. View at Google Scholar
  49. T. A. Yap, L. Vidal, J. Adam, et al., “Phase I trial of the irreversible EGFR and HER2 kinase inhibitor BIBW 2992 in patients with advanced solid tumors,” Journal of Clinical Oncology, vol. 28, no. 25, pp. 3965–3972, 2010. View at Google Scholar
  50. J. A. Engelman, K. Zejnullahu, C. M. Gale et al., “PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib,” Cancer Research, vol. 67, no. 24, pp. 11924–11932, 2007. View at Google Scholar
  51. W. Zhou, D. Ercan, L. Chen et al., “Novel mutant-selective EGFR kinase inhibitors against EGFR T790M,” Nature, vol. 462, no. 7276, pp. 1070–1074, 2009. View at Google Scholar
  52. D. Ercan, K. Zejnullahu, K. Yonesaka et al., “Amplification of EGFR T790M causes resistance to an irreversible EGFR inhibitor,” Oncogene, vol. 29, no. 16, pp. 2346–2356, 2010. View at Google Scholar
  53. T. Yamada, K. Matsumoto, W. Wang et al., “Hepatocyte growth factor reduces susceptibility to an irreversible epidermal growth factor receptor inhibitor in EGFR-T790M mutant lung cancer,” Clinical Cancer Research, vol. 16, no. 1, pp. 174–183, 2010. View at Google Scholar
  54. W. Wang, Q. Li, T. Yamada et al., “Crosstalk to stromal fibroblasts induces resistance of lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors,” Clinical Cancer Research, vol. 15, no. 21, pp. 6630–6638, 2009. View at Google Scholar
  55. U. McDermott, R. V. Pusapati, J. G. Christensen, N. S. Gray, and J. Settleman, “Acquired resistance of non-small cell lung cancer cells to MET kinase inhibition is mediated by a switch to epidermal growth factor receptor dependency,” Cancer Research, vol. 70, no. 4, pp. 1625–1634, 2010. View at Google Scholar