About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 180594, 11 pages
http://dx.doi.org/10.1155/2011/180594
Review Article

Pathophysiology of the Peritoneal Membrane during Peritoneal Dialysis: The Role of Hyaluronan

Department of Medicine, The University of Hong Kong, Room 302 New Clinical Building, Queen Mary Hospital, Pokfulam, Hong Kong

Received 28 June 2011; Revised 11 September 2011; Accepted 12 September 2011

Academic Editor: Beric Henderson

Copyright © 2011 Susan Yung and Tak Mao Chan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Witowski, J. Wisniewska, K. Korybalska et al., “Prolonged exposure to glucose degradation products impairs viability and function of human peritoneal mesothelial cells,” Journal of the American Society of Nephrology, vol. 12, no. 11, pp. 2434–2441, 2001. View at Scopus
  2. A. Tauer, X. Zhang, T. P. Schaub et al., “Formation of advanced glycation end products during CAPD,” American Journal of Kidney Diseases, vol. 41, no. 3, pp. S57–S60, 2003. View at Scopus
  3. L. W. Morgan, A. Wieslander, M. Davies et al., “Glucose degradation products (GDP) retard remesothelialization independently of D-glucose concentration,” Kidney International, vol. 64, no. 5, pp. 1854–1866, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. V. Schwenger, C. Morath, A. Salava et al., “Damage to the peritoneal membrane by glucose degradation products is mediated by the receptor for advanced glycation end-products,” Journal of the American Society of Nephrology, vol. 17, no. 1, pp. 199–207, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. E. Boulanger, M. P. Wautier, J. L. Wautier et al., “AGEs bind to mesothelial cells via RAGE and stimulate VCAM-1 expression,” Kidney International, vol. 61, no. 1, pp. 148–156, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. J. D. Williams, K. J. Craig, N. Topley et al., “Morphologic changes in the peritoneal membrane of patients with renal disease,” Journal of the American Society of Nephrology, vol. 13, no. 2, pp. 470–479, 2002. View at Scopus
  7. K. Honda, K. Nitta, S. Horita, W. Yumura, and H. Nihei, “Morphological changes in the peritoneal vasculature of patients on CAPD with ultrafiltration failure,” Nephron, vol. 72, no. 2, pp. 171–176, 1996. View at Scopus
  8. S. Yung, G. J. Thomas, and M. Davies, “Induction of hyaluronan metabolism after mechanical injury of human peritoneal mesothelial cells in vitro,” Kidney International, vol. 58, no. 5, pp. 1953–1962, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Horiuchi, K. Miyamoto, S. Miyamoto et al., “Image analysis of remesothelialization following chemical wounding of cultured human peritoneal mesothelial cells: the role of hyaluronan synthesis,” Kidney International, vol. 64, no. 6, pp. 2280–2290, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. J. Dobbie, “Ultrastructure and pathology of the peritoneum in peritoneal dialysis,” in Textbook of Peritoneal Dialysis, R. Gokal, Ed., pp. 17–44, Kluwer Academic, Dodrecht, The Netherlands, 1994.
  11. T. M. Chan, J. K. H. Leung, R. C. W. Tsang, Z. H. Liu, L. S. Li, and S. Yung, “Emodin ameliorates glucose-induced matrix synthesis in human peritoneal mesothelial cells,” Kidney International, vol. 64, no. 2, pp. 519–533, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. P. C. Ferriola and W. Stewart, “Fibronectin expression and organization in mesothelial and mesothelioma cells,” American Journal of Physiology, vol. 271, no. 5, pp. L804–L812, 1996. View at Scopus
  13. C. C. Fang, C. J. Yen, Y. M. Chen et al., “Pentoxifylline inhibits human peritoneal mesothelial cell growth and collagen synthesis: effects on TGF-β,” Kidney International, vol. 57, no. 6, pp. 2626–2633, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. H. Ha, M. K. Cha, H. N. Choi, and H. B. Lee, “Effects of peritoneal dialysis solutions on the secretion of growth factors and extracellular matrix proteins by human peritoneal mesothelial cells,” Peritoneal Dialysis International, vol. 22, no. 2, pp. 171–177, 2002. View at Scopus
  15. P. Heldin and H. Pertoft, “Synthesis and assembly of the hyaluronan-containing coats around normal human mesothelial cells,” Experimental Cell Research, vol. 208, no. 2, pp. 422–429, 1993. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. S. Yung, G. A. Coles, J. D. Williams, and M. Davies, “The source and possible significance of hyaluronan in the peritoneal cavity,” Kidney International, vol. 46, no. 2, pp. 527–533, 1994. View at Scopus
  17. A. Breborowicz, K. Korybalska, A. Grzybowski, K. Wieczorowska-Tobis, L. Martis, and D. G. Oreopoulos, “Synthesis of hyaluronic acid by human peritoneal mesothelial cells: effect of cytokines and dialysate,” Peritoneal Dialysis International, vol. 16, no. 4, pp. 374–378, 1996. View at Scopus
  18. A. Breborowicz, J. Wisniewska, A. Polubinska, K. Wieczorowska-Tobis, L. Martis, and D. G. Oreopoulos, “Role of Peritoneal Mesothelial cells and fibroblasts in the synthesis of hyaluronan during peritoneal dialysis,” Peritoneal Dialysis International, vol. 18, no. 4, pp. 382–386, 1998. View at Scopus
  19. M. Davies, E. Stylianou, S. Yung, G. J. Thomas, G. A. Coles, and J. D. Williams, “Proteoglycans of CAPD-dialysate fluid and mesothelium,” Contributions to Nephrology, vol. 85, pp. 134–141, 1990. View at Scopus
  20. S. Yung, G. J. Thomas, E. Stylianou, J. D. Williams, G. A. Coles, and M. Davies, “Source of peritoneal proteoglycans: human peritoneal mesothelial cells synthesize and secrete mainly small dermatan sulfate proteoglycans,” American Journal of Pathology, vol. 146, no. 2, pp. 520–529, 1995. View at Scopus
  21. S. Yung, X. R. Chen, R. C. W. Tsang, Q. Zhang, and T. M. Chan, “Reduction of perlecan synthesis and induction of TGF-beta1 in human peritoneal mesothelial cells due to high dialysate glucose concentration: implication in peritoneal dialysis,” Journal of the American Society of Nephrology, vol. 15, no. 5, pp. 1178–1188, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Yung and T. M. Chan, “Hyaluronan—regulator and initiator of peritoneal inflammation and remodeling,” International Journal of Artificial Organs, vol. 30, no. 6, pp. 477–483, 2007. View at Scopus
  23. S. Yung and T. M. Chan, “Glycosaminoglycans and proteoglycans: overlooked entities?” Peritoneal Dialysis International, vol. 27, supplement 2, pp. S104–S109, 2007. View at Scopus
  24. S. Yung and T. M. Chan, “Peritoneal proteoglycans: much more than ground substance,” Peritoneal Dialysis International, vol. 27, no. 4, pp. 375–390, 2007. View at Scopus
  25. E. Stylianou, L. A. Jenner, M. Davies, G. A. Coles, and J. D. Williams, “Isolation, culture and characterization of human peritoneal mesothelial cells,” Kidney International, vol. 37, no. 6, pp. 1563–1570, 1990. View at Scopus
  26. S. Yung, F. K. Li, and T. M. Chan, “Peritoneal mesothelial cell culture and biology,” Peritoneal Dialysis International, vol. 26, no. 2, pp. 162–173, 2006. View at Scopus
  27. S. E. Mutsaers, “Mesothelial cells: their structure, function and role in serosal repair,” Respirology, vol. 7, no. 3, pp. 171–191, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. S. E. Mutsaers, D. Whitaker, and J. M. Papadimitriou, “Changes in the concentration of microvilli on the free surface of healing mesothelium are associated with alterations in surface membrane charge,” Journal of Pathology, vol. 180, no. 3, pp. 333–339, 1996. View at Publisher · View at Google Scholar · View at Scopus
  29. J. T. Hjelle, B. T. Golinska, D. C. Waters, K. R. Steidley, D. R. McCarroll, and J. W. Dobbie, “Isolation and propagation in vitro of peritoneal mesothelial cells,” Peritoneal Dialysis International, vol. 9, no. 4, pp. 341–347, 1989. View at Scopus
  30. A. M. Afify, B. M. Al-Khafaji, A. F. G. Paulino, and R. M. Davila, “Diagnostic use of muscle markers in the cytologic evaluation of serous fluids,” Applied Immunohistochemistry and Molecular Morphology, vol. 10, no. 2, pp. 178–182, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Kupryjańczyk and G. Karpińska, “Desmin expression in reactive mesothelium: a potential aid in evaluation of gynecologic specimens,” International Journal of Gynecological Pathology, vol. 17, no. 2, pp. 123–128, 1998. View at Scopus
  32. M. Simionescu and N. Sinionescu, “Organization of cell junctions in the peritoneal mesothelium,” Journal of Cell Biology, vol. 74, no. 1, pp. 98–110, 1977. View at Scopus
  33. T. Ito, N. Yorioka, M. Yamamotcv, K. Kataoka, and M. Yamakido, “Effect of glucose on intercellular junctions of cultured human peritoneal mesothelial cells,” Journal of the American Society of Nephrology, vol. 11, no. 11, pp. 1969–1979, 2000. View at Scopus
  34. T. Ito, N. Yorioka, Y. Kyuden et al., “Effect of glucose polymer on the intercellular junctions of cultured human peritoneal mesothelial cells,” Neprhon Experimental Nephrology, vol. 93, no. 3, pp. c97–105, 2003.
  35. S. E. Mutsaers, “The mesothelial cell,” International Journal of Biochemistry and Cell Biology, vol. 36, no. 1, pp. 9–16, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. S. E. Mutsaers and S. Wilkosz, “Structure and function of mesothelial cells,” Cancer Treatment and Research, vol. 134, pp. 1–19, 2007. View at Scopus
  37. S. Yung and T. M. Chan, “Mesothelial cells,” Peritoneal Dialysis International, vol. 27, no. 2, pp. S110–S115, 2007. View at Scopus
  38. T. C. Laurent, U. B. G. Laurent, and J. R. E. Fraser, “The structure and function of hyaluronan: an overview,” Immunology and Cell Biology, vol. 74, no. 2, pp. A1–A7, 1996. View at Scopus
  39. J. R. E. Fraser, T. C. Laurent, and U. B. G. Laurent, “Hyaluronan: its nature, distribution, functions and turnover,” Journal of Internal Medicine, vol. 242, no. 1, pp. 27–33, 1997. View at Scopus
  40. N. Itano, T. Sawai, M. Yoshida et al., “Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties,” The Journal of Biological Chemistry, vol. 274, no. 35, pp. 25085–25092, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. T. D. Camenisch, A. P. Spicer, T. Brehm-Gibson et al., “Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme,” The Journal of Clinical Investigation, vol. 106, no. 3, pp. 349–360, 2000. View at Scopus
  42. A. Jacobson, J. Brinck, M. J. Briskin, A. P. Spicer, and P. Heldin, “Expression of human hyaluronan syntheses in response to external stimuli,” Biochemical Journal, vol. 348, no. 1, pp. 29–35, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. T. C. Laurent and J. R. E. Fraser, “Hyaluronan,” The FASEB Journal, vol. 6, no. 7, pp. 2397–2404, 1992. View at Scopus
  44. A. Almond, “Hyaluronan,” Cellular and Molecular Life Sciences, vol. 64, no. 13, pp. 1591–1596, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. G. M. Campo, A. Avenoso, A. Micali et al., “High-molecular weight hyaluronan reduced renal PKC activation in genetically diabetic mice,” Biochimica et Biophysica Acta, vol. 1802, no. 11, pp. 1118–1130, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. D. Jiang, J. Liang, and P. W. Noble, “Hyaluronan in tissue injury and repair,” Annual Review of Cell and Developmental Biology, vol. 23, pp. 435–461, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. B. P. Toole, “Hyaluronan promotes the malignant phenotype,” Glycobiology, vol. 12, no. 3, pp. 37R–42R, 2002. View at Scopus
  48. P. Heldin, E. Karousou, B. Bernert, H. Porsch, K. Nishitsuka, and S. Skandalis, “Importance of hyaluronan-CD44 interactions in inflammation and tumorigenesis,” Connective Tissue Research, vol. 49, no. 3-4, pp. 215–218, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. N. Itano, L. Zhuo, and K. Kimata, “Impact of the hyaluronan-rich tumor microenvironment on cancer initiation and progression,” Cancer Science, vol. 99, no. 9, pp. 1720–1725, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. B. P. Toole, “Hyaluronan: from extracellular glue to pericellular cue,” Nature Reviews Cancer, vol. 4, no. 7, pp. 528–539, 2004. View at Scopus
  51. S. P. Evanko, J. C. Angello, and T. N. Wight, “Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 4, pp. 1004–1013, 1999. View at Scopus
  52. N. Itano, F. Atsumi, T. Sawai et al., “Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 6, pp. 3609–3614, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. A. Zoltan-Jones, L. Huang, S. Ghatak, and B. P. Toole, “Elevated hyaluronan production induces mesenchymal and transformed properties in epithelial cells,” The Journal of Biological Chemistry, vol. 278, no. 46, pp. 45801–45810, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. D. Jiang, J. Liang, and P. W. Noble, “Hyaluronan as an immune regulator in human diseases,” Physiological Reviews, vol. 91, no. 1, pp. 221–264, 2011. View at Publisher · View at Google Scholar · View at PubMed
  55. P. W. Noble, “Hyaluronan and its catabolic products in tissue injury and repair,” Matrix Biology, vol. 21, no. 1, pp. 25–29, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. B. Haslinger, S. Mandl-Weber, A. Sellmayer, and T. Sitter, “Hyaluronan fragments induce the synthesis of MCP-1 and IL-8 in cultured human peritoneal mesothelial cells,” Cell and Tissue Research, vol. 305, no. 1, pp. 79–86, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. D. C. West, I. N. Hampson, F. Arnold, and S. Kumar, “Angiogenesis induced by degradation products of hyaluronic acid,” Science, vol. 228, no. 4705, pp. 1324–1336, 1985. View at Scopus
  58. C. M. McKee, C. J. Lowenstein, M. R. Horton et al., “Hyaluronan fragments induce nitric-oxide synthase in murine macrophages through a nuclear factor κB-dependent mechanism,” The Journal of Biological Chemistry, vol. 272, no. 12, pp. 8013–8018, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. C. M. McKee, M. B. Penno, M. Cowman et al., “Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages: the role of HA size and CD44,” The Journal of Clinical Investigation, vol. 98, no. 10, pp. 2403–2413, 1996. View at Scopus
  60. C. Fieber, P. Baumann, R. Vallon et al., “Hyaluronan-oligosaccharide-induced transcription of metalloproteases,” Journal of Cell Science, vol. 117, no. 2, pp. 359–367, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. G. M. Campo, A. Avenoso, S. Campo, A. D'Ascola, G. Nastasi, and A. Calatroni, “Small hyaluronan oligosaccharides induce inflammation by engaging both toll-like-4 and CD44 receptors in human chondrocytes,” Biochemical Pharmacology, vol. 80, no. 4, pp. 480–490, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. N. Guo, X. Li, M. M. Mann, M. L. Funderburgh, Y. Du, and J. L. Funderburgh, “Hyaluronan synthesis mediates the fibrotic response of keratocytes to transforming growth factor β,” The Journal of Biological Chemistry, vol. 285, no. 42, pp. 32012–32019, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. S. Yung, G. A. Coles, and M. Davies, “IL-1β, a major stimulator of hyaluronan synthesis in vitro of human peritoneal mesothelial cells: relevance to peritonitis in CAPD,” Kidney International, vol. 50, no. 4, pp. 1337–1343, 1996. View at Scopus
  64. S. Pasonen-Seppänen, S. Karvinen, K. Törrönen et al., “EGF upregulates, whereas TGF-β downregulates, the hyaluronan synthases Has2 and Has3 in organotypic keratinocyte cultures: correlations with epidermal proliferation and differentiation,” Journal of Investigative Dermatology, vol. 120, no. 6, pp. 1038–1044, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. D. Vigetti, A. Genasetti, E. Karousou et al., “Proinflammatory cytokines induce hyaluronan synthesis and monocyte adhesion in human endothelial cells through hyaluronan synthase 2 (HAS2) and the nuclear factor-κB (NF-κB) pathway,” The Journal of Biological Chemistry, vol. 285, no. 32, pp. 24639–24645, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. H. S. Wang, W. H. Tung, K. T. Tang et al., “TGF-β induced hyaluronan synthesis in orbital fibroblasts involves protein kinase C βII activation in vitro,” Journal of Cellular Biochemistry, vol. 95, no. 2, pp. 256–267, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. M. Averbeck, C. A. Gebhardt, S. Voigt et al., “Differential regulation of hyaluronan metabolism in the epidermal and dermal compartments of human skin by UVB irradiation,” Journal of Investigative Dermatology, vol. 127, no. 3, pp. 687–697, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. C. P. D. Wheeler-Jones, C. E. Farrar, and A. A. Pitsillides, “Targeting hyaluronan of the endothelial glycocalyx for therapeutic intervention,” Current Opinion in Investigational Drugs, vol. 11, no. 9, pp. 997–1006, 2010. View at Scopus
  69. J. Roth, “Ultrahistochemical demonstration of saccharide components of complex carbohydrates at the alveolar cell surface and at the mesothelial cell surface of the pleura visceralis of mice by means of concanavalin A,” Experimentelle Pathologie, vol. 8, no. 3, pp. 157–167, 1973. View at Scopus
  70. S. P. Evanko, M. I. Tammi, R. H. Tammi, and T. N. Wight, “Hyaluronan-dependent pericellular matrix,” Advanced Drug Delivery Reviews, vol. 59, no. 13, pp. 1351–1365, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. A. Kultti, K. Rilla, R. Tiihonen, A. P. Spicer, R. H. Tammi, and M. I. Tammi, “Hyaluronan synthesis induces microvillus-like cell surface protrusions,” The Journal of Biological Chemistry, vol. 281, no. 23, pp. 15821–15828, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. F. R. Johnson and H. W. Whitting, “Repair of parietal peritoneum,” British Journal of Surgery, vol. 49, pp. 653–660, 1962.
  73. G. Eskeland, “Regeneration of parietal peritoneum in rats. 1. A light microscopical study,” Acta Pathologica et Microbiologica Scandinavica, vol. 68, no. 3, pp. 355–378, 1966. View at Scopus
  74. G. Eskeland and A. Kjaerheim, “Regeneration of parietal peritoneum in rats. 2. An electron microscopical study,” Acta Pathologica et Microbiologica Scandinavica, vol. 68, no. 3, pp. 379–395, 1966. View at Scopus
  75. S. E. Mutsaers, D. Whitaker, and J. M. Papadimitriou, “Mesothelial regeneration is not dependent on subserosal cells,” Journal of Pathology, vol. 190, no. 1, pp. 86–92, 2000. View at Publisher · View at Google Scholar · View at Scopus
  76. A. J. Foley-Comer, S. E. Herrick, T. Al-Mishlab, C. M. Prêle, G. J. Laurent, and S. E. Mutsaers, “Evidence for incorporation of free-floating mesothelial cells as a mechanism of serosal healing,” Journal of Cell Science, vol. 115, no. 7, pp. 1383–1389, 2002. View at Scopus
  77. D. Whitaker and J. Papadimitriou, “Mesothelial healing: morphological and kinetic investigations,” Journal of Pathology, vol. 145, no. 2, pp. 159–175, 1985. View at Scopus
  78. A. T. Raftery, “Regeneration of parietal and visceral peritoneum: an electron microscopical study,” Journal of Anatomy, vol. 115, no. 3, pp. 375–392, 1973. View at Scopus
  79. A. T. Raftery, “Regeneration of parietal and visceral peritoneum: an enzyme histochemical study,” Journal of Anatomy, vol. 121, no. 3, pp. 589–597, 1976. View at Scopus
  80. K. N. Lai, C. C. Szeto, K. B. Lai, C. W. K. Lam, D. T. M. Chan, and J. C. K. Leung, “Increased production of hyaluronan by peritoneal cells and its significance in patients on CAPD,” American Journal of Kidney Diseases, vol. 33, no. 2, pp. 318–324, 1999. View at Scopus
  81. S. Meran, D. Thomas, P. Stephens et al., “Involvement of hyaluronan in regulation of fibroblast phenotype,” The Journal of Biological Chemistry, vol. 282, no. 35, pp. 25687–25697, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. S. Yung and M. Davies, “Response of the human peritoneal mesothelial cell to injury: an in vitro model of peritoneal wound healing,” Kidney International, vol. 54, no. 6, pp. 2160–2169, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. G. Kaya, I. Rodriguez, J. L. Jorcano, P. Vassalli, and I. Stamenkovic, “Selective suppression of CD44 in keratinocytes of mice bearing an antisense CD44 transgene driven by a tissue-specific promoter disrupts hyaluronate metabolism in the skin and impairs keratinocyte proliferation,” Genes and Development, vol. 11, no. 8, pp. 996–1007, 1997. View at Scopus
  84. R. Stern, A. A. Asari, and K. N. Sugahara, “Hyaluronan fragments: an information-rich system,” European Journal of Cell Biology, vol. 85, no. 8, pp. 699–715, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. S. Yung, Z. H. Liu, K. N. Lai, L. S. Li, and T. M. Chan, “Emodin ameliorates glucose-induced morphologic abnormalities and synthesis of transforming growth factor β1 and fibronectin by human peritoneal mesothelial cells,” Peritoneal Dialysis International, vol. 21, supplement 3, pp. S41–S47, 2001. View at Scopus
  86. M. Yáñez-Mó, E. Lara-Pezzi, R. Selgas et al., “Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells,” The New England Journal of Medicine, vol. 348, no. 5, pp. 403–413, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. K. Ksiazek, K. Korybalska, A. Jorres, and J. Witowski, “Accelerated senescence of human peritoneal mesothelial cells exposed to high glucose: the role of TGF-beta1,” Laboratory Investigation, vol. 87, no. 4, pp. 345–356, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. J. Witowski, K. Ksiazek, and A. Jorres, “New insights into the biology of peritoneal mesothelial cells: the roles of epithelial-to-mesenchymal transition and cellular senescence,” Nephron Experimental Nephrology, vol. 108, no. 4, pp. e69–e73, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. K. Ksiazek, J. Mikula-Pietrasik, K. Korybalska, G. Dworacki, A. Jorres, and J. Witowski, “Senescent peritoneal mesothelial cells promote ovarian cancer cell adhesion, the role of oxidative stress-induced fibronectin,” American Journal of Pathology, vol. 174, no. 4, pp. 1230–1240, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. T. M. Chan, J. K. H. Leung, Y. Sun, K. N. Lai, R. C. W. Tsang, and S. Yung, “Different effects of amino acid-based and glucose-based dialysate from peritoneal dialysis patients on mesothelial cell ultrastructure and function,” Nephrology Dialysis Transplantation, vol. 18, no. 6, pp. 1086–1094, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Nieuwdorp, T. W. Van Haeften, M. C. L. G. Gouverneur et al., “Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo,” Diabetes, vol. 55, no. 2, pp. 480–486, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Breborowicz, A. Polubinska, K. Pawlaczyk et al., “Intraperitoneal hyaluronan administration in conscious rats: absorption, metabolism, and effects on peritoneal fluid dynamics,” Peritoneal Dialysis International, vol. 21, no. 2, pp. 130–135, 2001. View at Scopus
  93. A. Połubinska, K. Pawlaczyk, M. Kuzlan-Pawlaczyk et al., “Dialysis solution containing hyaluronan: effect on peritoneal permeability and inflammation in rats,” Kidney International, vol. 57, no. 3, pp. 1182–1189, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. T. Wang, C. Chen, O. Heimbürger, J. Waniewski, J. Bergström, and B. Lindholm, “Hyaluronan decreases peritoneal fluid absorption in peritoneal dialysis,” Journal of the American Society of Nephrology, vol. 8, no. 12, pp. 1915–1920, 1997. View at Scopus
  95. T. Wang, H. H. Cheng, O. Heimbürger et al., “Hyaluronan decreases peritoneal fluid absorption: effect of molecular weight and concentration of hyaluronan,” Kidney International, vol. 55, no. 2, pp. 667–673, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. T. Wang, H. H. Cheng, O. Heimbürger, J. Waniewski, J. Bergström, and B. Lindholm, “Hyaluronan prevents the decreased net ultrafiltration caused by increased peritoneal dialysate fill volume,” Kidney International, vol. 53, no. 2, pp. 496–502, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. A. Brȩborowicz, M. Pyda, J. Moberly, L. Martis, and D. Oreopoulos, “Effect of haluronan-supplemented dialysate on in vitro function of human peritoneal mesothelial cells,” American Journal of Nephrology, vol. 24, no. 3, pp. 316–321, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  98. L. S. Lam and J. L. Bert, “Hydraulic flow conductivity of hyaluronic acid solutions: effects of concentration and molecular weight,” Biorheology, vol. 27, no. 5, pp. 789–795, 1990. View at Scopus
  99. S. Osada, C. Hamada, T. Shimaoka, K. Kaneko, S. Horikoshi, and Y. Tomino, “Alterations in proteoglycan components and histopathology of the peritoneum in uraemic and peritoneal dialysis (PD) patients,” Nephrology Dialysis Transplantation, vol. 24, no. 11, pp. 3504–3512, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. N. Topley and J. D. Williams, “Effect of peritoneal dialysis on cytokine production by peritoneal cells,” Blood Purification, vol. 14, no. 2, pp. 188–197, 1996. View at Scopus
  101. S. Jones, C. J. Holmes, R. T. Krediet et al., “Bicarbonate/lactate-based peritoneal dialysis solution increases cancer antigen 125 and decreases hyaluronic acid levels,” Kidney International, vol. 59, no. 4, pp. 1529–1538, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  102. J. D. Williams, N. Topley, K. J. Craig et al., “The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane,” Kidney International, vol. 66, no. 1, pp. 408–418, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  103. L. N. Nejsum and W. J. Nelson, “Epithelial cell surface polarity: the early steps,” Frontiers in Bioscience, vol. 14, pp. 1088–1098, 2009. View at Scopus
  104. F. Van Roy and G. Berx, “The cell-cell adhesion molecule E-cadherin,” Cellular and Molecular Life Sciences, vol. 65, no. 23, pp. 3756–3788, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. F. Wirtz-Peitz and J. A. Zallen, “Junctional trafficking and epithelial morphogenesis,” Current Opinion in Genetics and Development, vol. 19, no. 4, pp. 350–356, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  106. Y. Xu and Q. Yu, “E-cadherin negatively regulates CD44-hyaluronan interaction and CD44-mediated tumor invasion and branching morphogenesis,” The Journal of Biological Chemistry, vol. 278, no. 10, pp. 8661–8668, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  107. S. M. Frisch and R. A. Screaton, “Anoikis mechanisms,” Current Opinion in Cell Biology, vol. 13, no. 5, pp. 555–562, 2001. View at Publisher · View at Google Scholar · View at Scopus
  108. L. Astachov, R. Vago, M. Aviv, and Z. Nevo, “Hyaluronan and mesenchymal stem cells: from germ layer to cartilage and bone,” Frontiers in Bioscience, vol. 16, no. 1, pp. 261–276, 2011. View at Publisher · View at Google Scholar
  109. A. H. Yang, J. Y. Chen, and J. K. Lin, “Myofibroblastic conversion of mesothelial cells,” Kidney International, vol. 63, no. 4, pp. 1530–1539, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  110. P. J. Margetts, P. Bonniaud, L. Liu et al., “Transient overexpression of TGF-β1 induces epithelial mesenchymal transition in the rodent peritoneum,” Journal of the American Society of Nephrology, vol. 16, no. 2, pp. 425–436, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  111. E. A. Craig, P. Parker, and T. D. Camenisch, “Size-dependent regulation of Snail2 by hyaluronan: its role in cellular invasion,” Glycobiology, vol. 19, no. 8, pp. 890–898, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  112. L. Alaniz, M. García, P. Cabrera et al., “Modulation of matrix metalloproteinase-9 activity by hyaluronan is dependent on NF-κB activity in lymphoma cell lines with dissimilar invasive behavior,” Biochemical and Biophysical Research Communications, vol. 324, no. 2, pp. 736–743, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  113. M. Bruno, P. Gabella, and A. Ramello, “Use of amino acids in peritoneal dialysis solutions,” Peritoneal Dialysis International, vol. 20, supplement 2, pp. S166–S171, 2000. View at Scopus
  114. T. M. Chan and S. Yung, “Studying the effects of new peritoneal dialysis solutions on the peritoneum,” Peritoneal Dialysis International, vol. 27, supplement 2, pp. S87–S93, 2007. View at Scopus
  115. E. Garcia-Lopez, B. Lindholm, and A. Tranæus, “Biocompatibility of new peritoneal dialysis solutions: clinical experience,” Peritoneal Dialysis International, vol. 20, supplement 5, pp. S48–S56, 2001.
  116. M. Haag-Weber, R. Krämer, R. Haake et al., “Low-GDP fluid (Gambrosol trio®) attenuates decline of residual renal function in PD patients: a prospective randomized study,” Nephrology Dialysis Transplantation, vol. 25, no. 7, pp. 2288–2296, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  117. S. Yung, M. K. M. Ma, K. F. Ng, et al., “Impact of a low-glucose peritoneal dialysis regime on inflammatory and fibrotic mediators in effluent dialysate,” Journal of the American Society of Nephrology, vol. 22, p. 735A, 2011.
  118. E. Honkanen, B. Froseth, and C. Gronhagen-Riska, “Serum hyaluronic acid and procollagen III amino terminal propeptide in chronic renal failure,” American Journal of Nephrology, vol. 11, no. 3, pp. 201–206, 1991. View at Scopus
  119. R. Hallgren, A. Engstrom-Laurent, and U. Nisbeth, “Circulating hyaluronate. A potential marker of altered metabolism of the connective tissue in uremia,” Nephron, vol. 46, no. 2, pp. 150–154, 1987. View at Scopus
  120. G. W. Lipkin, M. A. Forbes, E. H. Cooper, and J. H. Turney, “Hyaluronic acid metabolism and its clinical significance in patients treated by continuous ambulatory peritoneal dialysis,” Nephrology Dialysis Transplantation, vol. 8, no. 4, pp. 357–360, 1993. View at Scopus
  121. C. C. Szeto, T. Y. Wong, K. B. Lai, C. W. Lam, K. N. Lai, and P. K. Li, “Dialysate hyaluronan concentration predicts survival but not peritoneal sclerosis in continous ambulatory peritoneal dialysis,” American Journal of Kidney Diseases, vol. 36, no. 3, pp. 609–614, 2000. View at Scopus