About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 197946, 14 pages
http://dx.doi.org/10.1155/2011/197946
Review Article

Histone Deacetylase Inhibitors: The Epigenetic Therapeutics That Repress Hypoxia-Inducible Factors

Department of Biology and Graduate Program of Biological Sciences, College of Arts & Sciences, Drexel University, 3141 Chestnut Street, Stratton Hall 318, Philadelphia, PA 19104, USA

Received 20 July 2010; Accepted 25 September 2010

Academic Editor: Minoru Yoshida

Copyright © 2011 Shuyang Chen and Nianli Sang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. L. Schwartz, J. A. Bankson, R. Lemos Jr. et al., “Radiosensitization and stromal imaging response correlates for the HIF-1 inhibitor PX-478 given with or without chemotherapy in pancreatic cancer,” Molecular Cancer Therapeutics, vol. 9, no. 7, pp. 2057–2067, 2010. View at Publisher · View at Google Scholar
  2. G. L. Semenza, “Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics,” Oncogene, vol. 29, no. 5, pp. 625–634, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Daponte, M. Ioannou, I. Mylonis et al., “Prognostic significance of hypoxia-inducible factor 1 alpha(HIF-1alpha) expression in serous ovarian cancer: an immunohistochemical study,” BMC Cancer, vol. 8, article no. 335, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Gómez-Raposo, M. Mendiola, J. Barriuso, E. Casado, D. Hardisson, and A. Redondo, “Angiogenesis and ovarian cancer,” Clinical & Translational Oncology, vol. 11, no. 9, pp. 564–571, 2009.
  5. H. Jiang and Y. Feng, “Hypoxia-inducible factor 1α (HIF-1α) correlated with tumor growth and apoptosis in ovarian cancer,” International Journal of Gynecological Cancer, vol. 16, supplement 1, pp. 405–412, 2006. View at Publisher · View at Google Scholar
  6. J. M. Brown and W. R. Wilson, “Exploiting tumour hypoxia in cancer treatment,” Nature Reviews Cancer, vol. 4, no. 6, pp. 437–447, 2004. View at Scopus
  7. A. Giaccia, B. G. Siim, and R. S. Johnson, “HIF-1 as a target for drug development,” Nature Reviews Drug Discovery, vol. 2, no. 10, pp. 803–811, 2003. View at Scopus
  8. G. Powis and L. Kirkpatrick, “Hypoxia inducible factor-1α as a cancer drug target,” Molecular Cancer Therapeutics, vol. 3, no. 5, pp. 647–654, 2004. View at Scopus
  9. G. L. Semenza, “Targeting HIF-1 for cancer therapy,” Nature Reviews Cancer, vol. 3, no. 10, pp. 721–732, 2003. View at Scopus
  10. S. J. Welsh and G. Powis, “Hypoxia inducible factor as a cancer drug target,” Current Cancer Drug Targets, vol. 3, no. 6, pp. 391–405, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Kong, E. J. Park, A. G. Stephen et al., “Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity,” Cancer Research, vol. 65, no. 19, pp. 9047–9055, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Tan, R. G. De Noronha, A. J. Roecker et al., “Identification of a novel small-molecule inhibitor of the hypoxia-inducible factor 1 pathway,” Cancer Research, vol. 65, no. 2, pp. 605–612, 2005. View at Scopus
  13. S. Welsh, R. Williams, L. Kirkpatrick, G. Paine-Murrieta, and G. Powis, “Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1α,” Molecular Cancer Therapeutics, vol. 3, no. 3, pp. 233–244, 2004. View at Scopus
  14. D. C. Drummond, C. O. Noble, D. B. Kirpotin, Z. Guo, G. K. Scott, and C. C. Benz, “Clinical development of histone deacetylase inhibitors as anticancer agents,” Annual Review of Pharmacology and Toxicology, vol. 45, pp. 495–528, 2005. View at Publisher · View at Google Scholar
  15. R. W. Johnstone and J. D. Licht, “Histone deacetylase inhibitors in cancer therapy: is transcription the primary target?” Cancer Cell, vol. 4, no. 1, pp. 13–18, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. P. A. Marks, V. M. Richon, R. Breslow, and R. A. Rifkind, “Histone deacetylase inhibitors as new cancer drugs,” Current Opinion in Oncology, vol. 13, no. 6, pp. 477–483, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. D. M. Fath, X. Kong, D. Liang et al., “Histone deacetylase inhibitors repress the transactivation potential of hypoxia-inducible factors independently of direct acetylation of HIF-α,” Journal of Biological Chemistry, vol. 281, no. 19, pp. 13612–13619, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Kong, Z. Lin, D. Liang, D. Fath, N. Sang, and J. Caro, “Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor 1α,” Molecular and Cellular Biology, vol. 26, no. 6, pp. 2019–2028, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Ahringer, “NuRD and SIN3: histone deacetylase complexes in development,” Trends in Genetics, vol. 16, no. 8, pp. 351–356, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. X.-J. Yang and S. Grégoire, “Class II histone deacetylases: from sequence to function, regulation, and clinical implication,” Molecular and Cellular Biology, vol. 25, no. 8, pp. 2873–2884, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. X.-J. Yang and E. Seto, “Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression,” Current Opinion in Genetics and Development, vol. 13, no. 2, pp. 143–153, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Choudhary, C. Kumar, F. Gnad et al., “Lysine acetylation targets protein complexes and co-regulates major cellular functions,” Science, vol. 325, no. 5942, pp. 834–840, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Bali, M. Pranpat, J. Bradner et al., “Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors,” Journal of Biological Chemistry, vol. 280, no. 29, pp. 26729–26734, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. P. A. Marks and M. Dokmanovic, “Histone deacetylase inhibitors: discovery and development as anticancer agents,” Expert Opinion on Investigational Drugs, vol. 14, no. 12, pp. 1497–1511, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Blander and L. Guarente, “The Sir2 family of protein deacetylases,” Annual Review of Biochemistry, vol. 73, pp. 417–435, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Goodson, B. A. Jonas, and M. A. Privalsky, “Corepressors: custom tailoring and alterations while you wait,” Nuclear Receptor Signal, vol. 3, article no. e003, 2005.
  27. M. G. Rosenfeld, V. V. Lunyak, and C. K. Glass, “Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response,” Genes and Development, vol. 20, no. 11, pp. 1405–1428, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Joseph, G. Mudduluru, S. Antony, S. Vashistha, P. Ajitkumar, and K. Somasundaram, “Expression profiling of sodium butyrate (NaB)-treated cells: identification of regulation of genes related to cytokine signaling and cancer metastasis by NaB,” Oncogene, vol. 23, no. 37, pp. 6304–6315, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Rascle, J. A. Johnston, and B. Amati, “Deacetylase activity is required for recruitment of the basal transcription machinery and transactivation by STAT5,” Molecular and Cellular Biology, vol. 23, no. 12, pp. 4162–4173, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Ikenoue, K. Inoki, B. Zhao, and K.-L. Guan, “PTEN acetylation modulates its interaction with PDZ domain,” Cancer Research, vol. 68, no. 17, pp. 6908–6912, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. P.-O. Hasselgren, “Ubiquitination, phosphorylation, and acetylation—triple threat in muscle wasting,” Journal of Cellular Physiology, vol. 213, no. 3, pp. 679–689, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Chen and C. L. Cepko, “HDAC4 regulates neuronal survival in normal and diseased retinas,” Science, vol. 323, no. 5911, pp. 256–259, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. E. A. Miska, E. Langley, D. Wolf, C. Karlsson, J. Pines, and T. Kouzarides, “Differential localization of HDAC4 orchestrates muscle differentiation,” Nucleic Acids Research, vol. 29, no. 16, pp. 3439–3447, 2001. View at Scopus
  34. R. B. Vega, K. Matsuda, J. Oh et al., “Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis,” Cell, vol. 119, no. 4, pp. 555–566, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. A. H. Wang, N. R. Bertos, M. Vezmar et al., “HDAC4, a human histone deacetylase related to yeast HDA1, is a transcriptional corepressor,” Molecular and Cellular Biology, vol. 19, no. 11, pp. 7816–7827, 1999. View at Scopus
  36. E. Y. Huang, J. Zhang, E. A. Miska, M. G. Guenther, T. Kouzarides, and M. A. Lazar, “Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway,” Genes and Development, vol. 14, no. 1, pp. 45–54, 2000. View at Scopus
  37. R. B. Vega, B. C. Harrison, E. Meadows et al., “Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5,” Molecular and Cellular Biology, vol. 24, no. 19, pp. 8374–8385, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Lemercier, A. Verdel, B. Galloo, S. Curtet, M.-P. Brocard, and S. Khochbin, “mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity,” Journal of Biological Chemistry, vol. 275, no. 20, pp. 15594–15599, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. J. J. Kovacs, P. J. M. Murphy, S. Gaillard et al., “HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor,” Molecular Cell, vol. 18, no. 5, pp. 601–607, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. S. J. Haggarty, K. M. Koeller, J. C. Wong, C. M. Grozinger, and S. L. Schreiber, “Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 8, pp. 4389–4394, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Hubbert, A. Guardiola, R. Shao et al., “HDAC6 is a microtubule-associated deacetylase,” Nature, vol. 417, no. 6887, pp. 455–458, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Matsuyama, T. Shimazu, Y. Sumida et al., “In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation,” EMBO Journal, vol. 21, no. 24, pp. 6820–6831, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Zhang, N. Li, C. Caron et al., “HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo,” EMBO Journal, vol. 22, no. 5, pp. 1168–1179, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Rodriguez-Gonzalez, T. Lin, A. K. Ikeda, T. Simms-Waldrip, C. Fu, and K. M. Sakamoto, “Role of the aggresome pathway in cancer: targeting histone deacetylase 6-dependent protein degradation,” Cancer Research, vol. 68, no. 8, pp. 2557–2560, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Nakamura, M. Ogura, D. Tanaka, and N. Inagaki, “Localization of mouse mitochondrial SIRT proteins: shift of SIRT3 to nucleus by co-expression with SIRT5,” Biochemical and Biophysical Research Communications, vol. 366, no. 1, pp. 174–179, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. G.-G. Liou, J. C. Tanny, R. G. Kruger, T. Walz, and D. Moazed, “Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation,” Cell, vol. 121, no. 4, pp. 515–527, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Inoue, M. Hiratsuka, M. Osaki, and M. Oshimura, “The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation,” Cell Cycle, vol. 6, no. 9, pp. 1011–1018, 2007. View at Scopus
  48. B. J. North, B. L. Marshall, M. T. Borra, J. M. Denu, and E. Verdin, “The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase,” Molecular Cell, vol. 11, no. 2, pp. 437–444, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Vaquero, R. Sternglanz, and D. Reinberg, “NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs,” Oncogene, vol. 26, no. 37, pp. 5505–5520, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Kume, T. Uzu, K. Horiike et al., “Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney,” Journal of Clinical Investigation, vol. 120, no. 4, pp. 1043–1055, 2010. View at Publisher · View at Google Scholar
  51. T. Araki, Y. Sasaki, and J. Milbrandt, “Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration,” Science, vol. 305, no. 5686, pp. 1010–1013, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Fainzilber and J. L. Twiss, “Tracking in the wlds—the hunting of the SIRT and the luring of the draper,” Neuron, vol. 50, no. 6, pp. 819–821, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Villagra, F. Cheng, H-W. Wang, et al., “The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance,” Nature Immunology, vol. 10, pp. 92–100, 2008.
  54. X.-J. Yang and E. Seto, “HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention,” Oncogene, vol. 26, no. 37, pp. 5310–5318, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. Y.-Y. Lin, J.-Y. Lu, J. Zhang et al., “Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis,” Cell, vol. 136, no. 6, pp. 1073–1084, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. S. C. Kim, R. Sprung, Y. Chen et al., “Substrate and functional diversity of lysine acetylation revealed by a proteomics survey,” Molecular Cell, vol. 23, no. 4, pp. 607–618, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. I. V. Gregoretti, Y.-M. Lee, and H. V. Goodson, “Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis,” Journal of Molecular Biology, vol. 338, no. 1, pp. 17–31, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. A. J. M. De Ruijter, A. H. Van Gennip, H. N. Caron, S. Kemp, and A. B. P. Van Kuilenburg, “Histone deacetylases (HDACs): characterization of the classical HDAC family,” Biochemical Journal, vol. 370, no. 3, pp. 737–749, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. A. R. Guardiola and T.-P. Yao, “Molecular cloning and characterization of a novel histone deacetylase HDAC10,” Journal of Biological Chemistry, vol. 277, no. 5, pp. 3350–3356, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. H.-Y. Kao, C.-H. Lee, A. Komarov, C. C. Han, and R. M. Evans, “Isolation and characterization of mammalian HDAC10, a novel histone deacetylase,” Journal of Biological Chemistry, vol. 277, no. 1, pp. 187–193, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. L. Gao, M. A. Cueto, F. Asselbergs, and P. Atadja, “Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family,” Journal of Biological Chemistry, vol. 277, no. 28, pp. 25748–25755, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. J. E. Bolden, M. J. Peart, and R. W. Johnstone, “Anticancer activities of histone deacetylase inhibitors,” Nature Reviews Drug Discovery, vol. 5, no. 9, pp. 769–784, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. P. A. Marks and R. Breslow, “Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug,” Nature Biotechnology, vol. 25, no. 1, pp. 84–90, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. T. J. Greshock, D. M. Johns, Y. Noguchi, and R. M. Williams, “Improved total synthesis of the potent HDAC inhibitor FK228 (FR-901228),” Organic Letters, vol. 10, no. 4, pp. 613–616, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. A. F. Taghiyev, N. V. Guseva, M. T. Sturm, O. W. Rokhlin, and M. B. Cohen, “Trichostatin a (TSA) sensitizes the human prostatic cancer cell line DU145 to death receptor ligands treatment,” Cancer Biology and Therapy, vol. 4, no. 4, pp. 382–390, 2005. View at Scopus
  66. D. M. Vigushin, S. Ali, P. E. Pace et al., “Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo,” Clinical Cancer Research, vol. 7, no. 4, pp. 971–976, 2001. View at Scopus
  67. D. M. Lucas, L. Alinari, D. A. West et al., “The novel deacetylase inhibitor AR-42 demonstrates pre-clinical activity in B-cell malignancies in vitro and in vivo,” PLoS One, vol. 5, no. 6, article no. e10941, 2010. View at Publisher · View at Google Scholar
  68. C.-J. Lai, R. Bao, X. Tao et al., “CUDC-101, a multitargeted inhibitor of histone deacetylase, epidermal growth factor receptor, and human epidermal growth factor receptor 2, exerts potent anticancer activity,” Cancer Research, vol. 70, no. 9, pp. 3647–3656, 2010. View at Publisher · View at Google Scholar
  69. G. L. Semenza, “Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1,” Annual Review of Cell and Developmental Biology, vol. 15, pp. 551–578, 1999. View at Publisher · View at Google Scholar · View at Scopus
  70. G. L. Semenza, “Expression of hypoxia-inducible factor 1: mechanisms and consequences,” Biochemical Pharmacology, vol. 59, no. 1, pp. 47–53, 2000. View at Publisher · View at Google Scholar · View at Scopus
  71. C.-J. Hu, A. Sataur, L. Wang, H. Chen, and M. C. Simon, “The N-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1α and HIF-2α,” Molecular Biology of the Cell, vol. 18, no. 11, pp. 4528–4542, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. C.-J. Hu, L.-Y. Wang, L. A. Chodosh, B. Keith, and M. C. Simon, “Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation,” Molecular and Cellular Biology, vol. 23, no. 24, pp. 9361–9374, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. V. A. Carroll and M. Ashcroft, “Role of hypoxia-inducible factor (HIF)-1α versus HIF-2α in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von Hippel-Lindau function: implications for targeting the HIF pathway,” Cancer Research, vol. 66, no. 12, pp. 6264–6270, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. W. G. Kaelin Jr., “The von Hippel-Lindau tumor suppressor protein and clear cell renal carcinoma,” Clinical Cancer Research, vol. 13, no. 2, pp. 680s–684s, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. D. Liao and R. S. Johnson, “Hypoxia: a key regulator of angiogenesis in cancer,” Cancer and Metastasis Reviews, vol. 26, no. 2, pp. 281–290, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. R. Bos, P. J. Van Diest, J. S. De Jong, P. Van Der Groep, P. Van Der Valk, and E. Van Der Wall, “Hypoxia-inducible factor-1α is associated with angiogenesis, and expression of bFGF, PDGF-BB, and EGFR in invasive breast cancer,” Histopathology, vol. 46, no. 1, pp. 31–36, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Calvani, A. Rapisarda, B. Uranchimeg, R. H. Shoemaker, and G. Melillo, “Hypoxic induction of an HIF-1α-dependent bFGF autocrine loop drives angiogenesis in human endothelial cells,” Blood, vol. 107, no. 7, pp. 2705–2712, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. W. G. Kaelin Jr., “The von Hippel-Lindau protein, HIF hydroxylation, and oxygen sensing,” Biochemical and Biophysical Research Communications, vol. 338, no. 1, pp. 627–628, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. D. Lando, J. J. Gorman, M. L. Whitelaw, and D. J. Peet, “Oxygen-dependent regulation of hypoxia-inducible factors by prolyl and asparaginyl hydroxylation,” European Journal of Biochemistry, vol. 270, no. 5, pp. 781–790, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. G. L. Semenza, “Hydroxylation of HIF-1: oxygen sensing at the molecular level,” Physiology, vol. 19, no. 4, pp. 176–182, 2004. View at Scopus
  81. L. E. Huang, J. Gu, M. Schau, and H. F. Bunn, “Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 14, pp. 7987–7992, 1998. View at Scopus
  82. S. Salceda and J. Caro, “Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes,” Journal of Biological Chemistry, vol. 272, no. 36, pp. 22642–22647, 1997. View at Publisher · View at Google Scholar
  83. Z. Arany, L. E. Huang, R. Eckner et al., “An essential role for p300/CBP in the cellular response to hypoxia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 23, pp. 12969–12973, 1996. View at Publisher · View at Google Scholar · View at Scopus
  84. P. Carrero, K. Okamoto, P. Coumailleau, S. A. O'Brien, H. Tanaka, and L. Poellinger, “Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia, inducible factor 1α,” Molecular and Cellular Biology, vol. 20, no. 1, pp. 402–415, 2000. View at Scopus
  85. D. Lando, D. J. Peet, D. A. Whelan, J. J. Gorman, and M. L. Whitelaw, “Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch,” Science, vol. 295, no. 5556, pp. 858–861, 2002. View at Publisher · View at Google Scholar · View at Scopus
  86. N. Sang, J. Fang, V. Srinivas, I. Leshchinsky, and J. Caro, “Carboxyl-terminal transactivation activity of hypoxia-inducible factor 1α is governed by a von Hippel-Lindau protein-independent, hydroxylation-regulated association with p300/CBP,” Molecular and Cellular Biology, vol. 22, no. 9, pp. 2984–2992, 2002. View at Publisher · View at Google Scholar · View at Scopus
  87. R. Paddenberg, A. Goldenberg, P. Faulhammer, R. C. Braun-Dullaeus, and W. Kummer, “Mitochondrial complex II is essential for hypoxia-induced ROS generation and vasoconstriction in the pulmonary vasculature,” Advances in Experimental Medicine and Biology, vol. 536, pp. 163–169, 2002. View at Scopus
  88. R. D. Guzy, B. Hoyos, E. Robin et al., “Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing,” Cell Metabolism, vol. 1, no. 6, pp. 401–408, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. M. Meng, S. Chen, T. Lao, D. Liang, and N. Sang, “Nitrogen anabolism underlies the importance of glutaminolysis in proliferating cells,” Cell Cycle, vol. 9, no. 19, pp. 3921–3932, 2010.
  90. G. L. Semenza, “Intratumoral hypoxia, radiation resistance, and HIF-1,” Cancer Cell, vol. 5, no. 5, pp. 405–406, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. G. L. Semenza, “Development of novel therapeutic strategies that target HIF-1,” Expert Opinion on Therapeutic Targets, vol. 10, no. 2, pp. 267–280, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. H. Zhong, K. Chiles, D. Feldser et al., “Modulation of hypoxia-inducible factor 1α expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics,” Cancer Research, vol. 60, no. 6, pp. 1541–1545, 2000. View at Scopus
  93. P. Vaupel, M. Höckel, and A. Mayer, “Detection and characterization of tumor hypoxia using pO2 histography,” Antioxidants and Redox Signaling, vol. 9, no. 8, pp. 1221–1235, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. H. E. Ryan, J. Lo, and R. S. Johnson, “HIF-1α is required for solid tumor formation and embryonic vascularization,” EMBO Journal, vol. 17, no. 11, pp. 3005–3015, 1998. View at Publisher · View at Google Scholar · View at Scopus
  95. H. E. Ryan, M. Poloni, W. McNulty et al., “Hypoxia-inducible factor-1α is a positive factor in solid tumor growth,” Cancer Research, vol. 60, no. 15, pp. 4010–4015, 2000. View at Scopus
  96. K. Hirota and G. L. Semenza, “Regulation of angiogenesis by hypoxia-inducible factor 1,” Critical Reviews in Oncology/Hematology, vol. 59, no. 1, pp. 15–26, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. C. Bouzin and O. Feron, “Targeting tumor stroma and exploiting mature tumor vasculature to improve anti-cancer drug delivery,” Drug Resistance Updates, vol. 10, no. 3, pp. 109–120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. A. H. Licht, F. Müller-Holtkamp, I. Flamme, and G. Breier, “Inhibition of hypoxia-inducible factor activity in endothelial cells disrupts embryonic cardiovascular development,” Blood, vol. 107, no. 2, pp. 584–590, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. T. Löfstedt, E. Fredlund, L. Holmquist-Mengelbier et al., “Hypoxia inducible factor-2α in cancer,” Cell Cycle, vol. 6, no. 8, pp. 919–926, 2007. View at Scopus
  100. W. G. An, M. Kanekal, M. C. Simon, E. Maltepe, M. V. Blagosklonny, and L. M. Neckers, “Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha,” Nature, vol. 392, no. 6674, pp. 405–408, 1998. View at Scopus
  101. M. V. Blagosklonny, W. G. An, L. Y. Romanova, J. Trepel, T. Fojo, and L. Neckers, “p53 inhibits hypoxia-inducible factor-stimulated transcription,” Journal of Biological Chemistry, vol. 273, no. 20, pp. 11995–11998, 1998. View at Publisher · View at Google Scholar · View at Scopus
  102. J. S. Isaacs, Y. J. Jung, D. R. Mole et al., “HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability,” Cancer Cell, vol. 8, no. 2, pp. 143–153, 2005. View at Publisher · View at Google Scholar · View at Scopus
  103. R. Ravi, B. Mookerjee, Z. M. Bhujwalla et al., “Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1α,” Genes and Development, vol. 14, no. 1, pp. 34–44, 2000. View at Scopus
  104. N. Sang, D. P. Stiehl, J. Bohensky, I. Leshchinsky, V. Srinivas, and J. Caro, “MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300,” Journal of Biological Chemistry, vol. 278, no. 16, pp. 14013–14019, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. M. A. Selak, S. M. Armour, E. D. MacKenzie et al., “Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase,” Cancer Cell, vol. 7, no. 1, pp. 77–85, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. W. Zundel, C. Schindler, D. Haas-Kogan et al., “Loss of PTEN facilitates HIF-1-mediated gene expression,” Genes and Development, vol. 14, no. 4, pp. 391–396, 2000. View at Scopus
  107. L. Neckers and K. Neckers, “Heat-shock protein 90 inhibitors as novel cancer chemotherapeutics—an update,” Expert Opinion on Emerging Drugs, vol. 10, no. 1, pp. 137–149, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. Y. Miyata, “Hsp90 inhibitor geldanamycin and its derivatives as novel cancer chemotherapeutic agents,” Current Pharmaceutical Design, vol. 11, no. 9, pp. 1131–1138, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. M. Bazzaro, M. K. Lee, A. Zoso et al., “Ubiquitin-proteasome system stress sensitizes ovarian cancer to proteasome inhibitor-induced apoptosis,” Cancer Research, vol. 66, no. 7, pp. 3754–3763, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. Y. Ishii, S. Waxman, and D. Germain, “Targeting the ubiquitin-proteasome pathway in cancer therapy,” Anti-Cancer Agents in Medicinal Chemistry, vol. 7, no. 3, pp. 359–365, 2007. View at Publisher · View at Google Scholar · View at Scopus
  111. C. A. P. Joazeiro, K. C. Anderson, and T. Hunter, “Proteasome inhibitor drugs on the rise,” Cancer Research, vol. 66, no. 16, pp. 7840–7842, 2006. View at Publisher · View at Google Scholar · View at Scopus
  112. J. B. Sunwoo, Z. Chen, G. Dong et al., “Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-κB, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma,” Clinical Cancer Research, vol. 7, no. 5, pp. 1419–1428, 2001. View at Scopus
  113. D. Escuin, E. R. Kline, and P. Giannakakou, “Both microtubule-stabilizing and microtubule-destabilizing drugs inhibit hypoxia-inducible factor-1α accumulation and activity by disrupting microtubule function,” Cancer Research, vol. 65, no. 19, pp. 9021–9028, 2005. View at Publisher · View at Google Scholar · View at Scopus
  114. N. J. Mabjeesh, D. Escuin, T. M. LaVallee et al., “2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF,” Cancer Cell, vol. 3, no. 4, pp. 363–375, 2003. View at Publisher · View at Google Scholar · View at Scopus
  115. E. W. Newcomb, Y. Lukyanov, T. Schnee, M. A. Ali, L. Lan, and D. Zagzag, “Noscapine inhibits hypoxia-mediated HIF-1alpha expression andangiogenesis in vitro: a novel function for an old drug,” International Journal of Oncology, vol. 28, no. 5, pp. 1121–1130, 2006. View at Scopus
  116. D. Z. Qian, S. K. Kachhap, S. J. Collis et al., “Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1α,” Cancer Research, vol. 66, no. 17, pp. 8814–8821, 2006. View at Publisher · View at Google Scholar
  117. H. Kato, S. Tamamizu-Kato, and F. Shibasaki, “Histone deacetylase 7 associates with hypoxia-inducible factor 1α and increases transcriptional activity,” Journal of Biological Chemistry, vol. 279, no. 40, pp. 41966–41974, 2004. View at Publisher · View at Google Scholar · View at Scopus
  118. M. S. Kim, H. J. Kwon, Y. M. Lee et al., “Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes,” Nature Medicine, vol. 7, no. 4, pp. 437–443, 2001. View at Publisher · View at Google Scholar · View at Scopus
  119. E. Maltepe, G. W. Krampitz, K. M. Okazaki et al., “Hypoxia-inducible factor-dependent histone deacetylase activity determines stem cell fate in the placenta,” Development, vol. 132, no. 15, pp. 3393–3403, 2005. View at Publisher · View at Google Scholar · View at Scopus
  120. Y. M. Lee, S.-H. Kim, H.-S. Kim et al., “Inhibition of hypoxia-induced angiogenesis by FK228, a specific histone deacetylase inhibitor, via suppression of HIF-1α activity,” Biochemical and Biophysical Research Communications, vol. 300, no. 1, pp. 241–246, 2003. View at Publisher · View at Google Scholar · View at Scopus
  121. Y. Sasakawa, Y. Naoe, T. Noto et al., “Antitumor efficacy of FK228, a novel histone deacetylase inhibitor, depends on the effect on expression of angiogenesis factors,” Biochemical Pharmacology, vol. 66, no. 6, pp. 897–906, 2003. View at Publisher · View at Google Scholar · View at Scopus
  122. D. Zgouras, A. Wächtershäuser, D. Frings, and J. Stein, “Butyrate impairs intestinal tumor cell-induced angiogenesis by inhibiting HIF- 1α nuclear translocation,” Biochemical and Biophysical Research Communications, vol. 300, no. 4, pp. 832–838, 2003. View at Publisher · View at Google Scholar · View at Scopus
  123. T. Inoue, M. Hiratsuka, M. Osaki, and M. Oshimura, “The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation,” Cell Cycle, vol. 6, no. 9, pp. 1011–1018, 2007. View at Scopus
  124. J.-W. Jeong, M.-K. Bae, M.-Y. Ahn et al., “Regulation and destabilization of HIF-1α by ARD1-mediated acetylation,” Cell, vol. 111, no. 5, pp. 709–720, 2002. View at Publisher · View at Google Scholar · View at Scopus
  125. Y. Li, Z. Yuan, B. Liu et al., “Prevention of hypoxia-induced neuronal apoptosis through histone deacetylase inhibition,” Journal of Trauma, vol. 64, no. 4, pp. 863–870, 2008. View at Publisher · View at Google Scholar
  126. H. Manabe, Y. Nasu, T. Komiyama et al., “Inhibition of histone deacetylase down-regulates the expression of hypoxia-induced vascular endothelial growth factor by rheumatoid synovial fibroblasts,” Inflammation Research, vol. 57, no. 1, pp. 4–10, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. S. H. Kim, K. W. Kim, and J. W. Jeong, “Inhibition of hypoxia-induced angiogenesis by sodium butyrate, a histone deacetylase inhibitor, through hypoxia-inducible factor-1alpha suppression,” Oncology Report, vol. 17, no. 4, pp. 793–797, 2007.
  128. Z. N. Demidenko, A. M. Rapisarda, M. Garayoa, P. Giannakakou, G. Melillo, and M. V. Blagosklonny, “Accumulation of hypoxia-inducible factor-1α is limited by transcription-dependent depletion,” Oncogene, vol. 24, no. 30, pp. 4829–4838, 2005. View at Publisher · View at Google Scholar · View at Scopus
  129. L. H. Kasper, F. Boussouar, K. Boyd et al., “Two transactivation mechanisms cooperate for the bulk of HIF-1-responsive gene expression,” EMBO Journal, vol. 24, no. 22, pp. 3846–3858, 2005. View at Publisher · View at Google Scholar · View at Scopus
  130. L. H. Kasper and P. K. Brindle, “Mammalian gene expression program resiliency: the roles of multiple coactivator mechanisms in hypoxia-responsive transcription,” Cell Cycle, vol. 5, no. 2, pp. 142–146, 2006. View at Scopus
  131. D. P. Stiehl, D. M. Fath, D. Liang, Y. Jiang, and N. Sang, “Histone deacetylase inhibitors synergize p300 autoacetylation that regulates its transactivation activity and complex formation,” Cancer Research, vol. 67, no. 5, pp. 2256–2264, 2007. View at Publisher · View at Google Scholar · View at Scopus
  132. M. L. Hansson, A. E. Popko-Ścibor, M. Saint Just Ribeiro et al., “The transcriptional coactivator MAML1 regulates p300 autoacetylation and HAT activity,” Nucleic Acids Research, vol. 37, no. 9, pp. 2996–3006, 2009. View at Publisher · View at Google Scholar · View at Scopus
  133. J. C. Black, A. Mosley, T. Kitada, M. Washburn, and M. Carey, “The SIRT2 deacetylase regulates autoacetylation of p300,” Molecular Cell, vol. 32, no. 3, pp. 449–455, 2008. View at Publisher · View at Google Scholar · View at Scopus
  134. C. Simone, P. Stiegler, S.-V. Forcales et al., “Deacetylase recruitment by the C/H3 domain of the acetyltransferase p300,” Oncogene, vol. 23, no. 12, pp. 2177–2187, 2004. View at Publisher · View at Google Scholar · View at Scopus
  135. H. Xiao, T. Hasegawa, and K.-I. Isobe, “p300 Collaborates with Sp1 and Sp3 in p21(waf1/cip1) promoter activation induced by histone deacetylase inhibitor,” Journal of Biological Chemistry, vol. 275, no. 2, pp. 1371–1376, 2000. View at Publisher · View at Google Scholar · View at Scopus
  136. J. L. Ruas, U. Berchner-Pfannschmidt, S. Malik et al., “Complex regulation of the transactivation function of hypoxia-inducible factor-1αby direct interaction with two distinct domains of the creb-binding protein/p300,” Journal of Biological Chemistry, vol. 285, no. 4, pp. 2601–2609, 2010. View at Publisher · View at Google Scholar
  137. D. Liang, X. Kong, and N. Sang, “Effects of histone deacetylase inhibitors on HIF-1,” Cell Cycle, vol. 5, no. 21, pp. 2430–2435, 2006. View at Scopus
  138. K. Sadoul, C. Boyault, M. Pabion, and S. Khochbin, “Regulation of protein turnover by acetyltransferases and deacetylases,” Biochimie, vol. 90, no. 2, pp. 306–312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. C. Caron, C. Boyault, and S. Khochbin, “Regulatory cross-talk between lysine acetylation and ubiquitination: role in the control of protein stability,” BioEssays, vol. 27, no. 4, pp. 408–415, 2005.
  140. T. Arnesen, X. Kong, R. Evjenth et al., “Interaction between HIF-1α (ODD) and hARD1 does not induce acetylation and destabilization of HIF-1α,” FEBS Letters, vol. 579, no. 28, pp. 6428–6432, 2005. View at Publisher · View at Google Scholar
  141. R. Bilton, N. Mazure, E. Trottier et al., “Arrest-defective-1 protein, an acetyltransferase, does not alter stability of hypoxia-inducible factor (HIF)-1α and is not induced by hypoxia or HIF,” Journal of Biological Chemistry, vol. 280, no. 35, pp. 31132–31140, 2005. View at Publisher · View at Google Scholar · View at Scopus
  142. T. S. Fisher, S. Des Etages, L. Hayes, K. Crimin, and B. Li, “Analysis of ARD1 function in hypoxia response using retroviral RNA interference,” Journal of Biological Chemistry, vol. 280, no. 18, pp. 17749–17757, 2005. View at Publisher · View at Google Scholar · View at Scopus
  143. T. A. Murray-Rust, N. J. Oldham, K. S. Hewitson, and C. J. Schofield, “Purified recombinant hARD1 does not catalyse acetylation of Lys 532 of HIF-1α fragments in vitro,” FEBS Letters, vol. 580, no. 8, pp. 1911–1918, 2006. View at Publisher · View at Google Scholar · View at Scopus
  144. S.-H. Kim, J. A. Park, J. H. Kim et al., “Characterization of ARD1 variants in mammalian cells,” Biochemical and Biophysical Research Communications, vol. 340, no. 2, pp. 422–427, 2006. View at Publisher · View at Google Scholar · View at Scopus
  145. N. Sanchez-Puig and A. R. Fersht, “Characterization of the native and fibrillar conformation of the human nalpha-acetyltransferase ard1,” Protein Science, vol. 15, no. 8, pp. 1968–1976, 2006.
  146. J. H. Seo, J.-H. Cha, J.-H. Park et al., “Arrest defective 1 autoacetylation is a critical step in its ability to stimulate cancer cell proliferation,” Cancer Research, vol. 70, no. 11, pp. 4422–4432, 2010. View at Publisher · View at Google Scholar
  147. C.-C. Chang, M.-T. Lin, B.-R. Lin et al., “Effect of connective tissue growth factor on hypoxia-inducible factor 1α degradation and tumor angiogenesis,” Journal of the National Cancer Institute, vol. 98, no. 14, pp. 984–995, 2006. View at Publisher · View at Google Scholar
  148. S. Lin, S.-C. Tsai, C.-C. Lee, B.-W. Wang, J.-Y. Liou, and K.-G. Shyu, “Berberine inhibits HIF-1α expression via enhanced proteolysis,” Molecular Pharmacology, vol. 66, no. 3, pp. 612–619, 2004. View at Scopus
  149. G. Xenaki, T. Ontikatze, R. Rajendran et al., “PCAF is an HIF-1α cofactor that regulates p53 transcriptional activity in hypoxia,” Oncogene, vol. 27, no. 44, pp. 5785–5796, 2008. View at Publisher · View at Google Scholar · View at Scopus
  150. E. M. Dioum, R. Chen, M. S. Alexander et al., “Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1,” Science, vol. 324, no. 5932, pp. 1289–1293, 2009. View at Publisher · View at Google Scholar · View at Scopus
  151. W. Luo, J. Zhong, R. Chang, H. Hu, A. Pandey, and G. L. Semenza, “Hsp70 and CHIP selectively mediate ubiquitination and degradation of hypoxia-inducible factor (HIF)-1α but not HIF-2α,” Journal of Biological Chemistry, vol. 285, no. 6, pp. 3651–3663, 2010. View at Publisher · View at Google Scholar
  152. G.-C. Zeng, H. L. Ozer, and R. Hand, “Further characterization of the phenotype of ts20, a DNA(ts) mutant of BALB/3T3 cells,” Experimental Cell Research, vol. 160, no. 1, pp. 184–196, 1985. View at Scopus
  153. J. Buchner, “Hsp90 and Co.—a holding for folding,” Trends in Biochemical Sciences, vol. 24, no. 4, pp. 136–141, 1999. View at Publisher · View at Google Scholar · View at Scopus
  154. G. Chiosis, E. C. Lopes, and D. Solit, “Heat shock protein-90 inhibitors: a chronicle from geldanamycin to today's agents,” Current Opinion in Investigational Drugs, vol. 7, no. 6, pp. 534–541, 2006. View at Scopus
  155. M. P. Goetz, D. O. Toft, M. M. Ames, and C. Erlichman, “The Hsp90 chaperone complex as a novel target for cancer therapy,” Annals of Oncology, vol. 14, no. 8, pp. 1169–1176, 2003. View at Publisher · View at Google Scholar · View at Scopus
  156. J. Ai, Y. Wang, J. A. Dar et al., “HDAC6 regulates androgen receptor hypersensitivity and nuclear localization via modulating Hsp90 acetylation in castration-resistant prostate cancer,” Molecular Endocrinology, vol. 23, no. 12, pp. 1963–1972, 2009. View at Publisher · View at Google Scholar
  157. V. D. Kekatpure, A. J. Dannenberg, and K. Subbaramaiah, “HDAC6 modulates Hsp90 chaperone activity and regulates activation of aryl hydrocarbon receptor signaling,” Journal of Biological Chemistry, vol. 284, no. 12, pp. 7436–7445, 2009. View at Publisher · View at Google Scholar · View at Scopus
  158. S. Basak, D. Pookot, E. J. Noonan, and R. Dahiya, “Genistein down-regulates androgen receptor by modulating HDAC6-Hsp90 chaperone function,” Molecular Cancer Therapeutics, vol. 7, no. 10, pp. 3195–3202, 2008. View at Publisher · View at Google Scholar · View at Scopus
  159. R. Rao, W. Fiskus, Y. Yang et al., “HDAC6 inhibition enhances 17-AAG mediated abrogation of hsp90 chaperone function in human leukemia cells,” Blood, vol. 112, no. 5, pp. 1886–1893, 2008. View at Publisher · View at Google Scholar · View at Scopus
  160. J. J. Kovacs, P. J. M. Murphy, S. Gaillard et al., “HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor,” Molecular Cell, vol. 18, no. 5, pp. 601–607, 2005. View at Publisher · View at Google Scholar · View at Scopus
  161. S. W. L'Hernault and J. L. Rosenbaum, “Chlamydomonas alpha-tubulin is posttranslationally modified by acetylation on the epsilon-amino group of a lysine,” Biochemistry, vol. 24, no. 2, pp. 473–478, 1985.
  162. H. Maruta, K. Greer, and J. L. Rosenbaum, “The acetylation of alpha-tubulin and its relationship to the assembly and disassembly of microtubules,” Journal of Cell Biology, vol. 103, no. 2, pp. 571–579, 1986. View at Scopus
  163. A. D.-A. Tran, T. P. Marmo, A. A. Salam et al., “HDAC6 deacetylation of tubulin modulates dynamics of cellular adhesions,” Journal of Cell Science, vol. 120, no. 8, pp. 1469–1479, 2007. View at Publisher · View at Google Scholar · View at Scopus
  164. C. Boyault, K. Sadoul, M. Pabion, and S. Khochbin, “HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination,” Oncogene, vol. 26, no. 37, pp. 5468–5476, 2007. View at Publisher · View at Google Scholar · View at Scopus
  165. S. L. Thomas, D. Zhong, W. Zhou et al., “EF24, a novel curcumin analog, disrupts the microtubule cytoskeleton and inhibits HIF-1,” Cell Cycle, vol. 7, no. 15, pp. 2409–2417, 2008. View at Scopus
  166. J. H. Lim, Y. M. Lee, Y. S. Chun, J. Chen, J. E. Kim, and J. W. Park, “Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha,” Molecular cell, vol. 38, no. 6, pp. 864–878, 2010.
  167. S. Zhao, W. Xu, W. Jiang et al., “Regulation of cellular metabolism by protein lysine acetylation,” Science, vol. 327, no. 5968, pp. 1000–1004, 2010. View at Publisher · View at Google Scholar
  168. A. Granger, I. Abdullah, F. Huebner et al., “Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice,” FASEB Journal, vol. 22, no. 10, pp. 3549–3560, 2008. View at Publisher · View at Google Scholar · View at Scopus
  169. C. Colussi, B. Illi, J. Rosati et al., “Histone deacetylase inhibitors: keeping momentum for neuromuscular and cardiovascular diseases treatment,” Pharmacological Research, vol. 62, no. 1, pp. 3–10, 2010. View at Publisher · View at Google Scholar
  170. C. Colussi, R. Berni, J. Rosati et al., “The histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces cardiac arrhythmias in dystrophic mice,” Cardiovascular Research, vol. 87, no. 1, pp. 73–82, 2010. View at Publisher · View at Google Scholar