About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 238409, 11 pages
http://dx.doi.org/10.1155/2011/238409
Research Article

Motor-Evoked Potential Confirmation of Functional Improvement by Transplanted Bone Marrow Mesenchymal Stem Cell in the Ischemic Rat Brain

1Institute of Catholic Integrative Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea College of Medicine, Incheon 403-720, Republic of Korea
2Department of Neurosurgery, Uijeongbu St. Mary's Hospital, The Catholic University of Korea College of Medicine, 65-1 Kumoh-dong Uijeongbu, Gyeonggi 480-130, Republic of Korea
3Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul 137-701, Republic of Korea

Received 12 January 2011; Revised 21 March 2011; Accepted 25 March 2011

Academic Editor: Thomas Van Groen

Copyright © 2011 Dong-Kyu Jang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This study investigated the effect of bone marrow mesenchymal stem cells (BMSCs) on the motor pathway in the transient ischemic rat brain that were transplanted through the carotid artery, measuring motor-evoked potential (MEP) in the four limbs muscle and the atlantooccipital membrane, which was elicited after monopolar and bipolar transcortical stimulation. After monopolar stimulation, the latency of MEP was significantly prolonged, and the amplitude was less reduced in the BMSC group in comparison with the control group ( 𝑃 < . 0 5 ). MEPs induced by bipolar stimulation in the left forelimb could be measured in 40% of the BMSC group and the I wave that was not detected in the control group was also detected in 40% of the BMSC group. Our preliminary results imply that BMSCs transplanted to the ischemic rat brain mediate effects on the functional recovery of the cerebral motor cortex and the motor pathway.