About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 248613, 12 pages
http://dx.doi.org/10.1155/2011/248613
Research Article

Relative Quantification of Several Plasma Proteins during Liver Transplantation Surgery

1HUSLAB, Helsinki University Central Hospital, 00290 Helsinki, Finland
2Transplantation Laboratory and Infection Biology Research Program, Haartman Institute, University of Helsinki, 00290 Helsinki, Finland
3Transplantation and Liver Surgery Clinic, Helsinki University Central Hospital, 00290 Helsinki, Finland

Received 7 July 2011; Revised 26 August 2011; Accepted 18 September 2011

Academic Editor: P. J. Oefner

Copyright © 2011 Ville Parviainen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Gabay and I. Kushner, “Acute-phase proteins and other systemic responses to inflammation,” The New England Journal of Medicine, vol. 340, no. 6, pp. 448–454, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. N. L. Anderson, “The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum,” Clinical Chemistry, vol. 56, no. 2, pp. 177–185, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. N. L. Anderson and N. G. Anderson, “The human plasma proteome: history, character, and diagnostic prospects,” Molecular & Cellular Proteomics, vol. 1, no. 11, pp. 845–867, 2002. View at Scopus
  4. K. A. Stringer, N. J. Serkova, A. Karnovsky, K. Guire, R. Paine, and T. J. Standiford, “Metabolic consequences of sepsis-induced acute lung injury revealed by plasma 1H-nuclear magnetic resonance quantitative metabolomics and computational analysis,” The American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 300, no. 1, pp. L4–L11, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. R. P. Huang, “Detection of multiple proteins in an antibody-based protein microarray system,” Journal of Immunological Methods, vol. 255, no. 1-2, pp. 1–13, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. S. F. Kingsmore and D. D. Patel, “Multiplexed protein profiling on antibody-based microarrays by rolling circle amplification,” Current Opinion in Biotechnology, vol. 14, no. 1, pp. 74–81, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Schröder, A. Jacob, S. Tonack et al., “Dual-color proteomic profiling of complex samples with a microarray of 810 cancer-related antibodies,” Molecular and Cellular Proteomics, vol. 9, no. 6, pp. 1271–1280, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. H. Zhou, K. Bouwman, M. Schotanus et al., “Two-color, rolling-circle amplification on antibody microarrays for sensitive, multiplexed serum-protein measurements,” Genome Biology, vol. 5, no. 4, p. R28, 2004. View at Scopus
  9. C. C. Wang, R. P. Huang, M. Sommer et al., “Array-based multiplexed screening and quantitation of human cytokines and chemokines,” Journal of Proteome Research, vol. 1, no. 4, pp. 337–343, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Rimini, J. M. Schwenk, M. Sundberg et al., “Validation of serum protein profiles by a dual antibody array approach,” Journal of Proteomics, vol. 73, no. 2, pp. 252–266, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. S. F. Kingsmore, “Multiplexed protein measurement: technologies and applications of protein and antibody arrays,” Nature Reviews Drug Discovery, vol. 5, no. 4, pp. 310–320, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. J. Burke, E. B. Butler, B. S. Teh, and B. B. Haab, “Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers,” Proteomics, vol. 3, no. 1, pp. 56–63, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. A. Carlsson, D. M. Wuttge, J. Ingvarsson, et al., “Serum protein profiling of systemic lupus erythematosus and systemic sclerosis using recombinant antibody microarrays,” Molecular & Cellular Proteomics, vol. 10, no. 5, Article ID M110.005033, 2011. View at Publisher · View at Google Scholar · View at PubMed
  14. M. K. Han, Y. H. Oh, J. Kang et al., “Protein profiling in human sera for identification of potential lung cancer biomarkers using antibody microarray,” Proteomics, vol. 9, no. 24, pp. 5544–5552, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. J. R. Whiteaker, H. Zhang, L. Zhao et al., “Integrated pipeline for mass spectrometry-based discovery and confirmation of biomarkers demonstrated in a mouse model of breast cancer,” Journal of Proteome Research, vol. 6, no. 10, pp. 3962–3975, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. S. M. Hanash, S. J. Pitteri, and V. M. Faca, “Mining the plasma proteome for cancer biomarkers,” Nature, vol. 452, no. 7187, pp. 571–579, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. T. A. Addona, X. Shi, H. Keshishian, et al., “A pipeline that integrates the discovery and verification of plasma protein biomarkers reveals candidate markers for cardiovascular disease,” Nature Biotechnology, vol. 29, no. 7, pp. 635–643, 2011.
  18. A. N. Hoofnagle, J. O. Becker, M. H. Wener, and J. W. Heinecke, “Quantification of thyroglobulin, a low-abundance serum protein, by immunoaffinity peptide enrichment and tandem mass spectrometry,” Clinical Chemistry, vol. 54, no. 11, pp. 1796–1804, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. V. Kumar, D. R. Barnidge, L. S. Chen et al., “Quantification of serum 1–84 parathyroid hormone in patients with hyperparathyroidism by immunocapture in situ digestion liquid chromatography-tandem mass spectrometry,” Clinical Chemistry, vol. 56, no. 2, pp. 306–313, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. E. I. Chen, J. Hewel, B. Felding-Habermann, and J. R. Yates, “Large scale protein profiling by combination of protein fractionation and multidimensional protein identification technology (MudPIT),” Molecular and Cellular Proteomics, vol. 5, no. 1, pp. 53–56, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. M. Gstaiger and R. Aebersold, “Applying mass spectrometry-based proteomics to genetics, genomics and network biology,” Nature Reviews Genetics, vol. 10, no. 9, pp. 617–627, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. P. L. Ross, Y. N. Huang, J. N. Marchese et al., “Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents,” Molecular and Cellular Proteomics, vol. 3, no. 12, pp. 1154–1169, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. S. Suzuki and L. H. Toledo-Pereyra, “Interleukin 1 and tumor necrosis factor production as the initial stimulants of liver ischemia and reperfusion injury,” Journal of Surgical Research, vol. 57, no. 2, pp. 253–258, 1994. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. L. B. Becker, “New concepts in reactive oxygen species and cardiovascular reperfusion physiology,” Cardiovascular Research, vol. 61, no. 3, pp. 461–470, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. G. S. Omenn, D. J. States, M. Adamski et al., “Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database,” Proteomics, vol. 5, no. 13, pp. 3226–3245, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. K. Björhall, T. Miliotis, and P. Davidsson, “Comparison of different depletion strategies for improved resolution in proteomic analysis of human serum samples,” Proteomics, vol. 5, no. 1, pp. 307–317, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. N. Zolotarjova, J. Martosella, G. Nicol, J. Bailey, B. E. Boyes, and W. C. Barrett, “Differences among techniques for high-abundant protein depletion,” Proteomics, vol. 5, no. 13, pp. 3304–3313, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. S. Y. Ow, M. Salim, J. Noirel, C. Evans, and P. C. Wright, “Minimising iTRAQ ratio compression through understanding LC-MS elution dependence and high-resolution HILIC fractionation,” Proteomics, vol. 11, no. 11, pp. 2341–2346, 2011.
  29. A. J. Rai, C. A. Gelfand, B. C. Haywood et al., “HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples,” Proteomics, vol. 5, no. 13, pp. 3262–3277, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. M. K. Tuck, D. W. Chan, D. Chia et al., “Standard operating procedures for serum and plasma collection: early detection research network consensus statement standard operating procedure integration working group,” Journal of Proteome Research, vol. 8, no. 1, pp. 113–117, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. A. S. Schrohl, S. Würtz, E. Kohn et al., “Banking of biological fluids for studies of disease-associated protein biomarkers,” Molecular and Cellular Proteomics, vol. 7, no. 10, pp. 2061–2066, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. L. Anderson and J. Seilhamer, “A comparison of selected mRNA and protein abundances in human liver,” Electrophoresis, vol. 18, no. 3-4, pp. 533–537, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. S. Y. Hsieh, R. K. Chen, Y. H. Pan, and H. L. Lee, “Systematical evaluation of the effects of sample collection procedures on low-molecular-weight serum/plasma proteome profiling,” Proteomics, vol. 6, no. 10, pp. 3189–3198, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. T. Koide, D. Foster, S. Yoshitake, and E. W. Davie, “Amino acid sequence of human histidine-rich glycoprotein derived from the nucleotide sequence of its cDNA,” Biochemistry, vol. 25, no. 8, pp. 2220–2225, 1986. View at Scopus
  35. L. Leung, P. C. Harpel, R. L. Nachman, and E. M. Rabellino, “Histidine-rich-glycoprotein is present in human platelets and is released following thrombin stimulation,” Blood, vol. 62, no. 5, pp. 1016–1021, 1983. View at Scopus
  36. T. Shigekiyo, H. Yoshida, Y. Kanagawa et al., “Histidine-rich glycoprotein (HRG) Tokushima 2: novel HRG deficiency, molecular and cellular characterization,” Thrombosis and Haemostasis, vol. 84, no. 4, pp. 675–679, 2000. View at Scopus
  37. H. R. Lijnen, M. Hoylaerts, and D. Collen, “Isolation and characterization of a human plasma protein with affinity for the lysine binding sites in plasminogen. Role in the regulation of fibrinolysis and identification as histidine-rich glycoprotein,” Journal of Biological Chemistry, vol. 255, no. 21, pp. 10214–10222, 1980. View at Scopus
  38. H. R. Lijnen, M. Hoylaerts, and D. Collen, “Heparin binding properties of human histidine-rich glycoprotein. Mechanism and role in the neutralization of heparin in plasma,” Journal of Biological Chemistry, vol. 258, no. 6, pp. 3803–3808, 1983. View at Scopus
  39. L. L. Leung, R. L. Nachman, and P. C. Harpel, “Complex formation of platelet thrombospondin with histidine-rich glycoprotein,” Journal of Clinical Investigation, vol. 73, no. 1, pp. 5–12, 1984. View at Scopus
  40. S. C. Bock, K. L. Wion, G. A. Vehar, and R. M. Lawn, “Cloning and expression of the cDNA for human antithrombin III,” Nucleic Acids Research, vol. 10, no. 24, pp. 8113–8125, 1982. View at Scopus
  41. D. J. Perry and R. W. Carrell, “Molecular genetics of human antithrombin deficiency,” Human Mutation, vol. 7, no. 1, pp. 7–22, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. M. R. Downing, J. W. Bloom, and K. G. Mann, “Comparison of the inhibition of thrombin by three plasma protease inhibitors,” Biochemistry, vol. 17, no. 13, pp. 2649–2653, 1978. View at Scopus
  43. A. Z. Budzynski and J. R. Shainoff, “Fibrinogen and fibrin: biochemistry and pathophysiology,” Critical Reviews in Oncology and Hematology, vol. 6, no. 2, pp. 97–146, 1986. View at Scopus
  44. R. Schwarzenbacher, K. Zeth, K. Diederichs et al., “Crystal structure of human β2-glycoprotein I: implications for phospholipid binding and the antiphospholipid syndrome,” EMBO Journal, vol. 18, no. 22, pp. 6228–6239, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. R. W. Mahley, “Apolipoprotein E: cholesterol transport protein with expanding role in cell biology,” Science, vol. 240, no. 4852, pp. 622–630, 1988. View at Scopus
  46. L. Sottrup-Jensen, P. B. Lonblad, T. M. Stepanik, T. E. Petersen, S. Magnusson, and H. Jornvall, “Primary structure of the 'bait' region for proteinases in alpha 2-macroglobulin. nature of the complex,” FEBS Letters, vol. 127, no. 2, pp. 167–173, 1981.
  47. M. Piñeiro, M. A. Alava, N. González-Ramón et al., “ITIH4 serum concentration increases during acute-phase processes in human patients and is up-regulated by interleukin-6 in hepatocarcinoma HepG2 cells,” Biochemical and Biophysical Research Communications, vol. 263, no. 1, pp. 224–229, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. T. Hochepied, F. G. Berger, H. Baumann, and C. Libert, “α1-acid glycoprotein: an acute phase protein with inflammatory and immunomodulating properties,” Cytokine and Growth Factor Reviews, vol. 14, no. 1, pp. 25–34, 2003. View at Publisher · View at Google Scholar · View at Scopus