About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 271694, 19 pages
http://dx.doi.org/10.1155/2011/271694
Review Article

Murine Models of Systemic Lupus Erythematosus

Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA

Received 16 September 2010; Revised 9 December 2010; Accepted 19 December 2010

Academic Editor: Andrea Vecchione

Copyright © 2011 Daniel Perry et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. L. Moser, J. A. Kelly, C. J. Lessard, and J. B. Harley, “Recent insights into the genetic basis of systemic lupus erythematosus,” Genes and Immunity, vol. 10, no. 5, pp. 373–379, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. D. H. Kono and A. N. Theofilopoulos, “Genetics of SLE in mice,” Springer Seminars in Immunopathology, vol. 28, no. 2, pp. 83–96, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. L. Morel, “Genetics of SLE: evidence from mouse models,” Nature Reviews Rheumatology, vol. 6, no. 6, pp. 348–357, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. A. N. Theofilopoulos and F. J. Dixon, “Murine models of systemic lupus erythematosus,” Advances in Immunology, vol. 37, pp. 269–390, 1985. View at Scopus
  5. J. R. Roubinian, N. Talal, J. S. Greenspan, J. R. Goodman, and P. K. Siiteri, “Effect of castration and sex hormone treatment on survival, anti-nucleic acid antibodies, and glomerulonephritis in NZB/NZW F mice,” Journal of Experimental Medicine, vol. 147, no. 6, pp. 1568–1583, 1978. View at Scopus
  6. U. H. Rudofsky, B. D. Evans, S. L. Balaban, V. D. Mottironi, and A. E. Gabrielsen, “Differences in expression of lupus nephritis in New Zealand Mixed H-2(z) homozygous inbred strains of mice derived from New Zealand Black and New Zealand White mice: origins and initial characterization,” Laboratory Investigation, vol. 68, no. 4, pp. 419–426, 1993. View at Scopus
  7. L. Morel, U. H. Rudofsky, J. A. Longmate, J. Schiffenbauer, and E. K. Wakeland, “Polygenic control of susceptibility to murine systemic lupus erythematosus,” Immunity, vol. 1, no. 3, pp. 219–229, 1994. View at Scopus
  8. S. T. Waters, S. M. Fu, F. Gaskin et al., “NZM2328: a new mouse model of systemic lupus erythematosus with unique genetic susceptibility loci,” Clinical Immunology, vol. 100, no. 3, pp. 372–383, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. L. Morel, X. H. Tian, B. P. Croker, and E. K. Wakeland, “Epistatic modifiers of autoimmunity in a murine model of lupus nephritis,” Immunity, vol. 11, no. 2, pp. 131–139, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Mohan, L. Morel, P. Yang, and E. K. Wakeland, “Genetic dissection of systemic lupus erythematosu pathogenesis: Sle2 on murine chromosome 4 leads to B cell hyperactivity,” Journal of Immunology, vol. 159, no. 1, pp. 454–465, 1997. View at Scopus
  11. C. Mohan, E. Alas, L. Morel, P. Yang, and E. K. Wakeland, “Genetic dissection of SLE pathogenesis. Sle1 on murine chromosome 1 leads to a selective loss of tolerance to H2A/H2B/DNA subnuclesomes,” Journal of Clinical Investigation, vol. 101, no. 6, pp. 1362–1372, 1998. View at Scopus
  12. C. Mohan, Y. Yu, L. Morel, P. Yang, and E. K. Wakeland, “Genetic dissection of Sle pathogenesis: Sle3 on murine chromosome 7 impacts T cell activation, differentiation, and cell death,” Journal of Immunology, vol. 162, no. 11, pp. 6492–6502, 1999. View at Scopus
  13. L. Morel, C. Mohan, Y. Yu et al., “Functional dissection of systemic lupus erythematosus using congenic mouse strains,” Journal of Immunology, vol. 158, no. 12, pp. 6019–6028, 1997. View at Scopus
  14. E. S. Sobel, C. Mohan, L. Morel, J. Schiffenbauer, and E. K. Wakeland, “Genetic dissection of SLE pathogenesis: adoptive transfer of Sle1 mediates the loss of tolerance by bone marrow-derived B cells,” Journal of Immunology, vol. 162, no. 4, pp. 2415–2421, 1999. View at Scopus
  15. E. S. Sobel, L. Morel, R. Baert, C. Mohan, J. Schiffenbauer, and E. K. Wakeland, “Genetic dissection of systemic lupus erythematosus pathogenesis: evidence for functional expression of Sle3/5 by non-T cells,” Journal of Immunology, vol. 169, no. 7, pp. 4025–4032, 2002. View at Scopus
  16. E. S. Sobel, M. Satoh, Y. Chen, E. K. Wakeland, and L. Morel, “The major murine systemic lupus erythematosus susceptibility locus Sle1 results in abnormal functions of both B and T cells,” Journal of Immunology, vol. 169, no. 5, pp. 2694–2700, 2002. View at Scopus
  17. S. T. Waters, M. McDuffie, H. Bagavant et al., “Breaking tolerance to double stranded DNA, nucleosome, and other nuclear antigens is not required for the pathogenesis of lupus glomerulonephritis,” Journal of Experimental Medicine, vol. 199, no. 2, pp. 255–264, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. L. Morel, B. P. Croke, K. R. Blenman et al., “Genetic reconstitution of systemic lupus erythematosus immunopathology with polycongenic murine strains,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 12, pp. 6670–6675, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. S. M. Rahman, H. Niu, D. Perry, E. Wakeland, T. Manser, and L. Morel, “Expression of the autoimmune Fcgr2b NZW allele fails to be upregulated in germinal center B cells and is associated with increased IgG production,” Genes and Immunity, vol. 8, no. 7, pp. 604–612, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. Y. H. Lee, J. D. Ji, and G. G. Song, “Fcγ receptor IIB and IIIB polymorphisms and susceptibility to systemic lupus erythematosus and lupus nephritis: a meta-analysis,” Lupus, vol. 18, no. 8, pp. 727–734, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. S. A. Boackle, V. M. Holers, X. Chen et al., “Cr2, a candidate gene in the murine Sle1c lupus susceptibility locus, encodes a dysfunctional protein,” Immunity, vol. 15, no. 5, pp. 775–785, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Chen, D. Perry, S. A. Boackle et al., “Several genes contribute to the production of autoreactive B and T cells in the murine lupus susceptibility locus Sle1c,” Journal of Immunology, vol. 175, no. 2, pp. 1080–1089, 2005. View at Scopus
  23. H. Wu, S. A. Boackle, P. Hanvivadhanakul et al., “Association of a common complement receptor 2 haplotype with increased risk of systemic lupus erythematosus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 10, pp. 3961–3966, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. K. B. Douglas, D. C. Windels, J. Zhao et al., “Complement receptor 2 polymorphisms associated with systemic lupus erythematosus modulate alternative splicing,” Genes and Immunity, vol. 10, no. 5, pp. 457–469, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. A. E. Wandstrat, C. Nguyen, N. Limaye et al., “Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus,” Immunity, vol. 21, no. 6, pp. 769–780, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. K. R. Kumar, L. Li, M. Yan et al., “Regulation of B cell tolerance by the lupus susceptibility gene Ly108,” Science, vol. 312, no. 5780, pp. 1665–1669, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. D. S. C. Graham, T. J. Vyse, P. R. Fortin et al., “Association of LY9 in UK and Canadian SLE families,” Genes and Immunity, vol. 9, no. 2, pp. 93–102, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. A. Suzuki, R. Yamada, Y. Kochi et al., “Functional SNPs in CD244 increase the risk of rheumatoid arthritis in a Japanese population,” Nature Genetics, vol. 40, no. 10, pp. 1224–1229, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. J. Zhu, X. Liu, C. Xie et al., “T cell hyperactivity in lupus as a consequence of hyperstimulatory antigen-presenting cells,” Journal of Clinical Investigation, vol. 115, no. 7, pp. 1869–1878, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. K. Liu, Q. Z. Li, A. M. Delgado-Vega et al., “Kallikrein genes are associated with lupus and glomerular basement membrane-specific antibody-induced nephritis in mice and humans,” Journal of Clinical Investigation, vol. 119, no. 4, pp. 911–923, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. B. Andrews, R. A. Eisenberg, and A. N. Theofilopoulos, “Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains,” Journal of Experimental Medicine, vol. 148, no. 5, pp. 1198–1215, 1978. View at Scopus
  32. M. L. Watson, J. K. Rao, G. S. Gilkeson et al., “Genetic analysis of MRL-lpr mice: relationship of the Fas apoptosis gene to disease manifestations and renal disease-modifying loci,” Journal of Experimental Medicine, vol. 176, no. 6, pp. 1645–1656, 1992. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Strasser, P. J. Jost, and S. Nagata, “The many roles of FAS receptor signaling in the immune system,” Immunity, vol. 30, no. 2, pp. 180–192, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. J. L. Chu, J. Drappa, A. Parnassa, and K. B. Elkon, “The defect in Fas mRNA expression in MRL/lpr mice is associated with insertion of the retrotransposon, ETn,” Journal of Experimental Medicine, vol. 178, no. 2, pp. 723–730, 1993. View at Scopus
  35. E. A. Reap, D. Leslie, M. Abrahams, R. A. Eisenberg, and P. L. Cohen, “Apoptosis abnormalities of splenic lymphocytes in autoimmune lpr and gld mice,” Journal of Immunology, vol. 154, no. 2, pp. 936–943, 1995. View at Scopus
  36. T. Takahashi, M. Tanaka, C. I. Brannan et al., “Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand,” Cell, vol. 76, no. 6, pp. 969–976, 1994. View at Publisher · View at Google Scholar · View at Scopus
  37. D. H. Lynch, M. L. Watson, M. R. Alderson et al., “The mouse fas-ligand gene is mutated in gld mice and is part of a TNF family gene cluster,” Immunity, vol. 1, no. 2, pp. 131–136, 1994. View at Scopus
  38. D. T. Teachey, A. E. Seif, and S. A. Grupp, “Advances in the management and understanding of autoimmune lymphoproliferative syndrome (ALPS),” British Journal of Haematology, vol. 148, no. 2, pp. 205–216, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. D. A. Jabs, R. C. Kuppers, A. M. Saboori et al., “Effects of early and late treatment with anti-CD4 monoclonal antibody on autoimmune disease in MRL/MP-lpr/lpr mice,” Cellular Immunology, vol. 154, no. 1, pp. 66–76, 1994. View at Publisher · View at Google Scholar · View at Scopus
  40. M. J. Shlomchik, M. P. Madaio, D. Ni, M. Trounstein, and D. Huszar, “The role of B cells in lpr/lpr-induced autoimmunity,” Journal of Experimental Medicine, vol. 180, no. 4, pp. 1295–1306, 1994. View at Scopus
  41. Z. Hao, B. Hampel, H. Yagita, and K. Rajewsky, “T cell-specific ablation of Fas leads to Fas ligand-mediated lymphocyte depletion and inflammatory pulmonary fibrosis,” Journal of Experimental Medicine, vol. 199, no. 10, pp. 1355–1365, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. S. Izui, V. E. Kelley, and K. Masuda, “Induction of various autoantibodies by mutant gene lpr in several strains of mice,” Journal of Immunology, vol. 133, no. 1, pp. 227–233, 1984.
  43. P. B. Stranges, J. Watson, C. J. Cooper et al., “Elimination of antigen-presenting cells and autoreactive T cells by Fas contributes to prevention of autoimmunity,” Immunity, vol. 26, no. 5, pp. 629–641, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. V. E. Kelley and J. B. Roths, “Interaction of mutant lpr gene with background strain influences renal disease,” Clinical Immunology and Immunopathology, vol. 37, no. 2, pp. 220–229, 1985. View at Scopus
  45. S. Vidal, D. H. Kono, and A. N. Theofilopoulos, “Loci predisposing to autoimmunity in MRL-Fas(lpr) and C57BL/6-Fas(lpr) mice,” Journal of Clinical Investigation, vol. 101, no. 3, pp. 696–702, 1998. View at Scopus
  46. M. L. Santiago-Raber, M. K. Haraldsson, A. N. Theofilopoulos, and D. H. Kono, “Characterization of reciprocal Lmb1-4 interval MRL-Fas and C57BL/6-Fas congenic mice reveals significant effects from Lmb3,” Journal of Immunology, vol. 178, no. 12, pp. 8195–8202, 2007. View at Scopus
  47. M. K. Haraldsson, C. A. Louis-Dit-Sully, B. R. Lawson et al., “The lupus-related Lmb3 locus contains a disease-suppressing Coronin-1A gene mutation,” Immunity, vol. 28, no. 1, pp. 40–51, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. B. Andrews, R. A. Eisenberg, and A. N. Theofilopoulos, “Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains,” Journal of Experimental Medicine, vol. 148, no. 5, pp. 1198–1215, 1978. View at Scopus
  49. M. A. Maibaum, M. E. K. Haywood, M. J. Walport, and B. J. Morley, “Lupus susceptibility loci map within regions of BXSB derived from the SB/Le parental strain,” Immunogenetics, vol. 51, no. 4-5, pp. 370–372, 2000. View at Scopus
  50. E. D. Murphy and J. B. Roths, “A Y chromosome associated factor in strain BXSB producing accelerated autoimmunity and lymphoproliferation,” Arthritis and Rheumatism, vol. 22, no. 11, pp. 1188–1194, 1979. View at Scopus
  51. R. A. Eisenberg and F. J. Dixon, “Effect of castration on male-determined acceleration of autoimmune disease in BXSB mice,” Journal of Immunology, vol. 125, no. 5, pp. 1959–1961, 1980. View at Scopus
  52. C. C. Hudgins, R. T. Steinberg, and D. M. Klinman, “Studies of consomic mice bearing the Y chromosome of the BXSB mouse,” Journal of Immunology, vol. 134, no. 6, pp. 3849–3854, 1985. View at Scopus
  53. R. Merino, T. Shibata, S. De Kossodo, and S. Izui, “Differential effect of the autoimmune Yaa and Ipr genes on the acceleration of lupus-like syndrome in MRL/MpJ mice,” European Journal of Immunology, vol. 19, no. 11, pp. 2131–2137, 1989. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. P. Pisitkun, J. A. Deane, M. J. Difilippantonio, T. Tarasenko, A. B. Satterthwaite, and S. Bolland, “Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication,” Science, vol. 312, no. 5780, pp. 1669–1672, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. S. Subramanian, K. Tus, Q. Z. Li et al., “A Tlr7 translocation accelerates systemic autoimmunity in murine lupus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 26, pp. 9970–9975, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. P. von Landenberg and S. Bauer, “Nucleic acid recognizing Toll-like receptors and autoimmunity,” Current Opinion in Immunology, vol. 19, no. 6, pp. 606–610, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. E. A. Leadbetter, I. R. Rifkin, A. M. Hohlbaum, B. C. Beaudette, M. J. Shlomchik, and A. Marshak-Rothstein, “Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors,” Nature, vol. 416, no. 6881, pp. 603–607, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. C. M. Lau, C. Broughton, A. S. Tabor et al., “RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement,” Journal of Experimental Medicine, vol. 202, no. 9, pp. 1171–1177, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. J. A. Deane, P. Pisitkun, R. S. Barrett et al., “Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation,” Immunity, vol. 27, no. 5, pp. 801–810, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. A. M. Fairhurst, S. H. Hwang, A. Wang et al., “Yaa autoimmune phenotypes are conferred by overexpression of TLR7,” European Journal of Immunology, vol. 38, no. 7, pp. 1971–1978, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. M. L. Santiago-Raber, S. Kikuchi, P. Borel et al., “Evidence for genes in addition to Tlr7 in the Yaa translocation linked with acceleration of systemic lupus erythematosus,” Journal of Immunology, vol. 181, no. 2, pp. 1556–1562, 2008. View at Scopus
  62. N. Shen, Q. Fu, Y. Deng et al., “Sex-specific association of X-linked toll-like receptor 7 (TLR7) with male systemic lupus erythematosus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 36, pp. 15838–15843, 2010. View at Publisher · View at Google Scholar · View at PubMed
  63. S. Izui, M. Higaki, D. Morrow, and R. Merino, “The Y chromosome from autoimmune BXSB/MpJ mice induces a lupus-like syndrome in (NZW x C57BL/6)F male mice, but not in C57BL/6 male mice,” European Journal of Immunology, vol. 18, no. 6, pp. 911–915, 1988. View at Scopus
  64. R. Merino, L. Fossati, M. Lacour, R. Lemoine, M. Higaki, and S. Izui, “H-2-1inked control of the Yaa gene-induced acceleration of lupus-like autoimmune disease in BXSB mice,” European Journal of Immunology, vol. 22, no. 2, pp. 295–299, 1992. View at Scopus
  65. M. B. Hogarth, J. H. Slingsby, P. J. Allen et al., “Multiple lupus susceptibility loci map to chromosome 1 in BXSB mice,” Journal of Immunology, vol. 161, no. 6, pp. 2753–2761, 1998. View at Scopus
  66. M. E. K. Haywood, M. B. Hogarth, J. H. Slingsby et al., “Identification of intervals on chromosomes 1, 3, and 13 linked to the development of lupus in BXSB mice,” Arthritis and Rheumatism, vol. 43, no. 2, pp. 349–355, 2000. View at Publisher · View at Google Scholar · View at Scopus
  67. M. E. K. Haywood, N. J. Rogers, S. J. Rose et al., “Dissection of BXSB lupus phenotype using mice congenic for chromosome 1 demonstrates that separate intervals direct different aspects of disease,” Journal of Immunology, vol. 173, no. 7, pp. 4277–4285, 2004. View at Scopus
  68. L. E. Mũoz, K. Lauber, M. Schiller, A. A. Manfredi, and M. Herrmann, “The role of defective clearance of apoptotic cells in systemic autoimmunity,” Nature Reviews Rheumatology, vol. 6, no. 5, pp. 280–289, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. I. Hara, S. Izui, and F. J. Dixon, “Murine serum glycoprotein gp70 behaves as an acute phase reactant,” Journal of Experimental Medicine, vol. 155, no. 2, pp. 345–357, 1982. View at Scopus
  70. L. Baudino, K. Yoshinobu, N. Morito, M.-L. Santiago-Raber, and S. Izui, “Role of endogenous retroviruses in murine SLE,” Autoimmunity Reviews, vol. 10, no. 1, pp. 27–34, 2010. View at Publisher · View at Google Scholar · View at PubMed
  71. M. L. Santiago, C. Mary, D. Parzy et al., “Linkage of a major quantitative trait locus to Yaa gene-induced lupus-like nephritis in (NZW × C57BL/6)F1 mice,” European Journal of Immunology, vol. 28, no. 12, pp. 4257–4267, 1998. View at Scopus
  72. P. L. Oliver and J. P. Stoye, “Genetic analysis of Gv1, a gene controlling transcription of endogenous murine polytropic proviruses,” Journal of Virology, vol. 73, no. 10, pp. 8227–8234, 1999. View at Scopus
  73. L. Baudino, K. Yoshinobu, I. Dunand-Sauthier, L. H. Evans, and S. Izui, “TLR-mediated up-regulation of serum retroviral gp70 is controlled by the Sgp loci of lupus-prone mice,” Journal of Autoimmunity, vol. 35, no. 2, pp. 153–159, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. M. Satoh and W. H. Reeves, “Induction of lupus-associated autoantibodies in BALB/c mice by intraperitoneal injection of pristane,” Journal of Experimental Medicine, vol. 180, no. 6, pp. 2341–2346, 1994. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Satoh, A. Kumar, Y. S. Kanwar, and W. H. Reeves, “Anti-nuclear antibody production and immune-complex glomerulonephritis in BALB/c mice treated with pristane,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 24, pp. 10934–10938, 1995. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Satoh, H. B. Richards, V. M. Shaheen et al., “Widespread susceptibility among inbred mouse strains to the induction of lupus autoantibodies by pristane,” Clinical and Experimental Immunology, vol. 121, no. 2, pp. 399–405, 2000. View at Publisher · View at Google Scholar · View at Scopus
  77. D. L. Smith, X. Dong, S. Du, M. Oh, R. R. Singh, and R. R. Voskuhl, “A female preponderance for chemically induced lupus in SJL/J mice,” Clinical Immunology, vol. 122, no. 1, pp. 101–107, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. H. B. Richards, M. Satoh, M. Shaw, C. Libert, V. Poli, and W. H. Reeves, “Interleukin 6 dependence of anti-DNA antibody production: evidence for two pathways of autoantibody formation in pristane-induced lupus,” Journal of Experimental Medicine, vol. 188, no. 5, pp. 985–990, 1998. View at Publisher · View at Google Scholar · View at Scopus
  79. H. Yoshida, M. Satoh, K. M. Behney et al., “Effect of an exogenous trigger on the pathogenesis of lupus in (NZB × NZW)F1 mice,” Arthritis and Rheumatism, vol. 46, no. 8, pp. 2235–2244, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. N. Calvani, M. Satoh, B. P. Croker, W. H. Reeves, and H. B. Richards, “Nephritogenic autoantibodies but absence of nephritis in Il-12p35-deficient mice with pristane-induced lupus,” Kidney International, vol. 64, no. 3, pp. 897–905, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. H. B. Richards, M. Satoh, J. C. Jennette, B. P. Croker, H. Yoshida, and W. H. Reeves, “Interferon-γ is required for lupus nephritis in mice treated with the hydrocarbon oil pristane,” Kidney International, vol. 60, no. 6, pp. 2173–2180, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. V. Pascual, L. Farkas, and J. Banchereau, “Systemic lupus erythematosus: all roads lead to type I interferons,” Current Opinion in Immunology, vol. 18, no. 6, pp. 676–682, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. D. C. Nacionales, K. M. Kelly-Scumpia, P. Y. Lee et al., “Deficiency of the type I interferon receptor protects mice from experimental lupus,” Arthritis and Rheumatism, vol. 56, no. 11, pp. 3770–3783, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. D. L. Thibault, K. L. Graham, L. Y. Lee, I. Balboni, P. J. Hertzog, and P. J. Utz, “Type I interferon receptor controls B-cell expression of nucleic acid-sensing Toll-like receptors and autoantibody production in a murine model of lupus,” Arthritis Research and Therapy, vol. 11, no. 4, article no. R112, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. L. Rönnblom and V. Pascual, “The innate immune system in SLE: type I interferons and dendritic cells,” Lupus, vol. 17, no. 5, pp. 394–399, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. P. Y. Lee, J. S. Weinstein, D. C. Nacionales et al., “A novel type i IFN-producing cell subset in murine lupus,” Journal of Immunology, vol. 180, no. 7, pp. 5101–5108, 2008. View at Scopus
  87. P. Y. Lee, YI. Li, Y. Kumagai et al., “Type I interferon modulates monocyte recruitment and maturation in chronic inflammation,” American Journal of Pathology, vol. 175, no. 5, pp. 2023–2033, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. P. Y. Lee, Y. Kumagai, YI. Li et al., “TLR7-dependent and FcγR-independent production of type I interferon in experimental mouse lupus,” Journal of Experimental Medicine, vol. 205, no. 13, pp. 2995–3006, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. E. Savarese, C. Steinberg, R. D. Pawar et al., “Requirement of toll-like receptor 7 for pristane-induced production of autoantibodies and development of murine lupus nephritis,” Arthritis and Rheumatism, vol. 58, no. 4, pp. 1107–1115, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. F. J. Barrat, T. Meeker, J. Gregorio et al., “Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus,” Journal of Experimental Medicine, vol. 202, no. 8, pp. 1131–1139, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. V. R. Chowdhary, J. P. Grande, H. S. Luthra, and C. S. David, “Characterization of haemorrhagic pulmonary capillaritis: another manifestation of Pristane-induced lupus,” Rheumatology, vol. 46, no. 9, pp. 1405–1410, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. V. A. Nguyen, T. Gotwald, C. Prior, G. Obermoser, and N. Sepp, “Acute pulmonary edema, capillaritis and alveolar hemorrhage: pulmonary manifestations coexistent in antiphospholipid syndrome and systemic lupus erythematosus?” Lupus, vol. 14, no. 7, pp. 557–560, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. P. H. Wooley, J. R. Seibold, J. D. Whalen, and J. M. Chapdelaine, “Pristane-induced arthritis. The immunologic and genetic features of an experimental murine model of autoimmune disease,” Arthritis and Rheumatism, vol. 32, no. 8, pp. 1022–1030, 1989. View at Scopus
  94. M. Potter and J. S. Wax, “Genetics of susceptibility to pristane-induced plasmacytomas in BALB/cAn: reduced susceptibility in BALB/cJ with a brief description of pristane-induced arthritis,” Journal of Immunology, vol. 127, no. 4, pp. 1591–1595, 1981. View at Scopus
  95. J. T. Beech and S. J. Thompson, “Anti-tumour necrosis factor therapy ameliorates joint disease in a chronic model of inflammatory arthritis,” British Journal of Rheumatology, vol. 36, no. 10, p. 1129, 1997. View at Scopus
  96. C. S. Via, “Advances in lupus stemming from the parent-into-F1 model,” Trends in Immunology, vol. 31, no. 6, pp. 236–245, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. T. Grader-Beck, L. Casciola-Rosen, T. J. Lang, R. Puliaev, A. Rosen, and C. S. Via, “Apoptotic splenocytes drive the autoimmune response to poly(ADP-ribose) polymerase 1 in a murine model of lupus,” Journal of Immunology, vol. 178, no. 1, pp. 95–102, 2007. View at Scopus
  98. T. J. Lang, P. Nguyen, J. C. Papadimitriou, and C. S. Via, “Increased severity of murine lupus in female mice is due to enhanced expansion of pathogenic T cells,” Journal of Immunology, vol. 171, no. 11, pp. 5795–5801, 2003. View at Scopus
  99. R. Puliaev, I. Puliaeva, L. A. Welniak et al., “CTL-promoting effects of CD40 stimulation outweigh B cell-stimulatory effects resulting in B cell elimination and disease improvement in a murine model of lupus,” Journal of Immunology, vol. 181, no. 1, pp. 47–61, 2008. View at Scopus
  100. C. S. Via, V. Rus, M. K. Cately, and F. D. Finkelman, “IL-12 stimulates the development of acute graft-versus-host disease in mice that normally would develop chronic, autoimmune graft-versus-host disease,” Journal of Immunology, vol. 153, no. 9, pp. 4040–4047, 1994.
  101. T. J. Lang, P. Nguyen, R. Peach, W. C. Gause, and C. S. Via, “In vivo CD86 blockade inhibits CD4+ T cell activation, whereas CD80 blockade potentiates CD8+ T cell activation and CTL effector function,” Journal of Immunology, vol. 168, no. 8, pp. 3786–3792, 2002. View at Scopus
  102. C. S. Via, A. Shustov, V. Rus, T. Lang, P. Nguyen, and F. D. Finkelman, “In vivo neutralization of TNF-α promotes humoral autoimmunity by preventing the induction of CTL,” Journal of Immunology, vol. 167, no. 12, pp. 6821–6826, 2001. View at Scopus
  103. V. Rus, V. Nguyen, R. Puliaev et al., “T cell TRAIL promotes murine lupus by sustaining effector CD4 Th cell numbers and by inhibiting CD8 CTL activity,” Journal of Immunology, vol. 178, no. 6, pp. 3962–3972, 2007. View at Scopus
  104. S. C. Morris, P. L. Cohen, and R. A. Eisenberg, “Experimental induction of systemic lupus erythematosus by recognition of foreign Ia,” Clinical Immunology and Immunopathology, vol. 57, no. 2, pp. 263–273, 1990. View at Publisher · View at Google Scholar · View at Scopus
  105. B. A. Kiberd, “Interleukin-6 receptor blockage ameliorates murine lupus nephritis,” Journal of the American Society of Nephrology, vol. 4, no. 1, pp. 58–61, 1993.
  106. G. G. Illei, Y. Shirota, C. H. Yarboro et al., “Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study,” Arthritis and Rheumatism, vol. 62, no. 2, pp. 542–552, 2010. View at Publisher · View at Google Scholar · View at PubMed
  107. M. Mihara, N. Takagi, Y. Takeda, and Y. Ohsugi, “IL-6 receptor blockage inhibits the onset of autoimmune kidney disease in NZB/WF mice,” Clinical and Experimental Immunology, vol. 112, no. 3, pp. 397–402, 1998. View at Publisher · View at Google Scholar
  108. B. Liang, D. B. Gardner, D. E. Griswold, P. J. Bugelski, and X. Y. R. Song, “Anti-interleukin-6 monoclonal antibody inhibits autoimmune responses in a murine model of systemic lupus erythematosus,” Immunology, vol. 119, no. 3, pp. 296–305, 2006. View at Publisher · View at Google Scholar · View at PubMed
  109. Y. Kalechman, U. Gafter, J. P. Da, M. Albeck, D. Alarcon-Segovia, and B. Sredni, “Delay in the onset of systemic lupus erythematosus following treatment with the immunomodulator AS101: association with IL-10 inhibition and increase in TNF-α levels,” Journal of Immunology, vol. 159, no. 6, pp. 2658–2667, 1997.
  110. S. M. Proudman, P. G. Conaghan, C. Richardson et al., “Clinical and biologic effects of anti-interleukin-10 monoclonal antibody administration in systemic Lupus erythematosus,” Arthritis and Rheumatism, vol. 43, no. 8, pp. 1790–1800, 2000. View at Publisher · View at Google Scholar
  111. H. Ishida, T. Muchamuel, S. Sakaguchi, S. Andrade, S. Menon, and M. Howard, “Continuous administration of anti-interleukin 10 antibodies delays onset of autoimmunity in NZB/W F1 mice,” Journal of Experimental Medicine, vol. 179, no. 1, pp. 305–310, 1994. View at Publisher · View at Google Scholar
  112. Z. Yin, G. Bahtiyar, NA. Zhang et al., “IL-10 regulates murine lupus,” Journal of Immunology, vol. 169, no. 4, pp. 2148–2155, 2002.
  113. K. R. M. Blenman, B. Duan, Z. Xu et al., “IL-10 regulation of lupus in the NZM2410 murine model,” Laboratory Investigation, vol. 86, no. 11, pp. 1136–1148, 2006. View at Publisher · View at Google Scholar · View at PubMed
  114. C. Gordon, G. E. Ranges, J. S. Greenspan, and D. Wofsy, “Chronic therapy with recombinant tumor necrosis factor-α in autoimmune NZB/NZW F mice,” Clinical Immunology and Immunopathology, vol. 52, no. 3, pp. 421–434, 1989.
  115. M. Aringer, F. Houssiau, C. Gordon et al., “Adverse events and efficacy of TNF-alpha blockade with infliximab in patients with systemic lupus erythematosus: long-term follow-up of 13 patients,” Rheumatology (Oxford), vol. 48, no. 11, pp. 1451–1454, 2009.
  116. D. Zagury, H. L. Buanec, A. Mathian et al., “IFNα kinoid vaccine-induced neutralizing antibodies prevent clinical manifestations in a lupus flare murine model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 13, pp. 5294–5299, 2009. View at Publisher · View at Google Scholar · View at PubMed
  117. D. J. Wallace, M. Petri, N. Olsen, et al., “MEDI-545, an anti-interferon alpha monoclonal antibody, shows evidence of clinical activity in systemic lupus erythematous,” Arthritis & Rheumatism, vol. 56, supplement 9, pp. S526–S527, 2007.
  118. J. M. McBride, D. J. Wallace, Z. Yao, et al., “Dose-dependent modulation of interferon regulated genes with administration of single and repeat doses of Rontalizumab in a phase I, placebo controlled, double blind, dose escalation study in SLE,” Arthritis & Rheumatism, vol. 60, pp. S775–S776, 2009.
  119. A. Schwarting, K. Paul, S. Tschirner et al., “Interferon-β: a therapeutic for autoimmune lupus in MRL-Fas mice,” Journal of the American Society of Nephrology, vol. 16, no. 11, pp. 3264–3272, 2005. View at Publisher · View at Google Scholar · View at PubMed
  120. B. R. Lawson, G. J. Prud'homme, Y. Chang et al., “Treatment of murine lupus with cDNA encoding IFN-γR/Fc,” Journal of Clinical Investigation, vol. 106, no. 2, pp. 207–215, 2000.
  121. C. O. Jacob, P. H. Van Der Meide, and H. O. McDevitt, “In vivo treatment of (NZB × NZW)F1 lupus-like nephritis with monoclonal antibody to γ interferon,” Journal of Experimental Medicine, vol. 166, no. 3, pp. 798–803, 1987.
  122. P. S. Biswas, S. Gupta, E. Chang et al., “Phosphorylation of IRF4 by ROCK2 regulates IL-17 and IL-21 production and the development of autoimmunity in mice,” Journal of Clinical Investigation, vol. 120, no. 9, pp. 3280–3295, 2010. View at Publisher · View at Google Scholar · View at PubMed
  123. D. Herber, T. P. Brown, S. Liang, D. A. Young, M. Collins, and K. Dunussi-Joannopoulos, “IL-21 has a pathogenic role in a lupus-prone mouse model and its blockade with IL-21R.Fc reduces disease progression,” Journal of Immunology, vol. 178, no. 6, pp. 3822–3830, 2007.
  124. P. Bossù, D. Neumann, E. Del Giudice et al., “IL-18 cDNA vaccination protects mice from spontaneous lupus-like autoimmune disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 2, pp. 14181–14186, 2003. View at Publisher · View at Google Scholar · View at PubMed
  125. M. Ramanujam, R. Bethunaickan, W. Huang, H. Tao, M. P. Madaio, and A. Davidson, “Selective blockade of BAFF for the prevention and treatment of systemic lupus erythematosus nephritis in NZM2410 mice,” Arthritis and Rheumatism, vol. 62, no. 5, pp. 1457–1468, 2010. View at Publisher · View at Google Scholar · View at PubMed
  126. M. F. Petri, J. Merrill, D. J. Wallace, et al., “Four-year experience of belimumab, a BlyS-specific inhibitor, in systemic lupus erythematosus (SLE) patients,” Arthritis & Rheumatism, vol. 60, 2009.
  127. GlaxoSmithKline press release, “GlaxoSmithKline and Human Genome Sciences announce positive results in second of two phase 3 trials of benlysta in systemic lupus erythematosus,” 2009, http://us.gsk.com/html/media-news/pressreleases/2009/2009_pressrelease_10121.htm.
  128. R. M. Smith, M. R. Clatworthy, and D. R. W. Jayne, “Biological therapy for lupus nephritis-tribulations and trials,” Nature Reviews Rheumatology, vol. 6, no. 9, pp. 547–552, 2010. View at Publisher · View at Google Scholar · View at PubMed
  129. P. Scapini, Y. Hu, C.-L. Chu et al., “Myeloid cells, BAFF, and IFN-γ establish an inflammatory loop that exacerbates autoimmunity in Lyn-deficient mice,” Journal of Experimental Medicine, vol. 207, no. 8, pp. 1757–1773, 2010. View at Publisher · View at Google Scholar · View at PubMed
  130. J. A. Gross, J. Johnston, S. Mudri et al., “TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease,” Nature, vol. 404, no. 6781, pp. 995–999, 2000. View at Publisher · View at Google Scholar · View at PubMed
  131. M. Ramanujam, X. Wang, W. Huang et al., “Mechanism of action of transmembrane activator and calcium modulator ligand interactor-Ig in murine systemic lupus erythematosus,” Journal of Immunology, vol. 173, no. 5, pp. 3524–3534, 2004.
  132. W. Liu, A. Szalai, L. Zhao et al., “Control of spontaneous B lymphocyte autoimmunity with adenovirus-encoded soluble TACI,” Arthritis and Rheumatism, vol. 50, no. 6, pp. 1884–1896, 2004. View at Publisher · View at Google Scholar · View at PubMed
  133. A. Ahuja, J. Shupe, R. Dunn, M. Kashgarian, M. R. Kehry, and M. J. Shlomchik, “Depletion of B cells in murine lupus: efficacy and resistance,” Journal of Immunology, vol. 179, no. 5, pp. 3351–3361, 2007.
  134. J. T. Merrill, C. M. Neuwelt, D. J. Wallace et al., “Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial,” Arthritis and Rheumatism, vol. 62, no. 1, pp. 222–233, 2010. View at Publisher · View at Google Scholar · View at PubMed
  135. I. Sanz and F. E. H. Lee, “B cells as therapeutic targets in SLE,” Nature Reviews Rheumatology, vol. 6, no. 6, pp. 326–337, 2010. View at Publisher · View at Google Scholar · View at PubMed
  136. US National Library of Medicine, “A study to evaluate ocrelizumab in patients with nephritis due to systemic lupus erythematosus (BeLONG),” 2010, http://clinicaltrials.gov/ct2/show/NCT00626197.
  137. K. M. Haas, R. Watanabe, T. Matsushita et al., “Protective and pathogenic roles for B cells during systemic autoimmunity in NZB/W F1 mice,” Journal of Immunology, vol. 184, no. 9, pp. 4789–4800, 2010. View at Publisher · View at Google Scholar · View at PubMed
  138. T. Dörner, J. Kaufmann, W. A. Wegener, N. Teoh, D. M. Goldenberg, and G. R. Burmester, “Initial clinical trial of epratuzumab (humanized anti-CD22 antibody) for immunotherapy of systemic lupus erythematosus,” Arthritis Research and Therapy, vol. 8, no. 3, article no. R74, 2006. View at Publisher · View at Google Scholar · View at PubMed
  139. UCB press release, “UCB and Immunomedics announce positive results for epratuzumab phase IIb study in systemic lupus erythematosus (SLe),” 2009, http://www.ucb.com/media-room/newsdetail/?det=1337304.
  140. Y. Li, F. Chen, M. Putt et al., “B cell depletion with anti-CD79 mAbs ameliorates autoimmune disease in MRL/lpr mice,” Journal of Immunology, vol. 181, no. 5, pp. 2961–2972, 2008.
  141. K. Neubert, S. Meister, K. Moser et al., “The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis,” Nature Medicine, vol. 14, no. 7, pp. 748–755, 2008. View at Publisher · View at Google Scholar · View at PubMed
  142. B. K. Finck, P. S. Linsley, and D. Wofsy, “Treatment of murine lupus with CTLA4Ig,” Science, vol. 265, no. 5176, pp. 1225–1227, 1994.
  143. D. I. Daikh, B. K. Finck, P. S. Linsley, D. Hollenbaugh, and D. Wofsy, “Long-term inhibition of murine lupus by brief simultaneous blockade of the B7/CD28 and CD40/gp39 costimulation pathways,” Journal of Immunology, vol. 159, no. 7, pp. 3104–3108, 1997.
  144. US National Library of Medicine, “Abatacept and cyclophosphamide combination therapy for lupus nephritis (ACCeSS),” 2010, http://clinicaltrials.gov/ct2/show/NCT00774852.
  145. M. Mihara, I. Tan, Y. Chuzhin et al., “CTLA4Ig inhibits T cell-dependent B-cell maturation in murine systemic lupus erythematosus,” Journal of Clinical Investigation, vol. 106, no. 1, pp. 91–101, 2000.
  146. S. A. Oracki, E. Tsantikos, C. Quilici et al., “CTLA4Ig alters the course of autoimmune disease development in Lyn/ mice,” Journal of Immunology, vol. 184, no. 2, pp. 757–763, 2010. View at Publisher · View at Google Scholar · View at PubMed
  147. H. Y. Wu, F. J. Quintana, and H. L. Weiner, “Nasal anti-CD3 antibody ameliorates lupus by inducing an IL-10-secreting CD4+CD25+LAP+ regulatory T Cell and is associated with down-regulation of IL-17+CD4+ICOS+CXCR5+ follicular helper T cells,” Journal of Immunology, vol. 181, no. 9, pp. 6038–6050, 2008.
  148. YI. L. Hu, D. P. Metz, J. Chung, G. Siu, and M. Zhang, “B7RP-1 blockade ameliorates autoimmunity through regulation of follicular helper T cells,” Journal of Immunology, vol. 182, no. 3, pp. 1421–1428, 2009.
  149. T. L. McGaha, B. Sorrentino, and J. V. Ravetch, “Restoration of tolerance in lupus by targeted inhibitory receptor expression,” Science, vol. 307, no. 5709, pp. 590–593, 2005. View at Publisher · View at Google Scholar · View at PubMed
  150. F. J. Barrat, T. Meeker, J. H. Chan, C. Guiducci, and R. L. Coffmann, “Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms,” European Journal of Immunology, vol. 37, no. 12, pp. 3582–3586, 2007. View at Publisher · View at Google Scholar · View at PubMed
  151. M. Wong, A. La Cava, R. P. Singh, and B. H. Hahn, “Blockade of programmed death-1 in young (New Zealand Black × New Zealand White)F1 mice promotes the activity of suppressive CD8+ T cells that protect from lupus-like disease,” The Journal of Immunology, vol. 185, no. 11, pp. 6563–6571, 2010.
  152. F. R. Bahjat, P. R. Pine, A. Reitsma et al., “An orally bioavailable spleen tyrosine kinase inhibitor delays disease progression and prolongs survival in murine lupus,” Arthritis and Rheumatism, vol. 58, no. 5, pp. 1433–1444, 2008. View at Publisher · View at Google Scholar · View at PubMed
  153. G. M. Deng, L. Liu, F. R. Bahjat, P. R. Pine, and G. C. Tsokos, “Suppression of skin and kidney disease by inhibition of spleen tyrosine kinase in lupus-prone mice,” Arthritis and Rheumatism, vol. 62, no. 7, pp. 2086–2092, 2010. View at Publisher · View at Google Scholar · View at PubMed
  154. D. F. Barber, A. Bartolomé, C. Hernandez et al., “PI3Kγ inhibition blocks glomerulonephritis and extends lifespan in a mouse model of systemic lupus,” Nature Medicine, vol. 11, no. 9, pp. 933–935, 2005. View at Publisher · View at Google Scholar · View at PubMed
  155. S. L. Lui, R. Tsang, K. W. Chan et al., “Rapamycin attenuates the severity of established nephritis in lupus-prone NZB/W F1 mice,” Nephrology Dialysis Transplantation, vol. 23, no. 9, pp. 2768–2776, 2008. View at Publisher · View at Google Scholar · View at PubMed
  156. D. Fernandez, E. Bonilla, N. Mirza, B. Niland, and A. Perl, “Rapamycin reduces disease activity and normalizes T cell activation-induced calcium fluxing in patients with systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 54, no. 9, pp. 2983–2988, 2006. View at Publisher · View at Google Scholar · View at PubMed
  157. P. A. Blair, K. A. Chavez-Rueda, J. G. Evans et al., “Selective targeting of B cells with agonistic anti-CD40 is an efficacious strategy for the generation of induced regulatory T2-like B cells and for the suppression of lupus in MRL/lpr mice,” Journal of Immunology, vol. 182, no. 6, pp. 3492–3502, 2009. View at Publisher · View at Google Scholar · View at PubMed
  158. K. J. Scalapino, Q. Tang, J. A. Bluestone, M. L. Bonyhadi, and D. I. Daikh, “Suppression of disease in New Zealand Black/New Zealand White lupus-prone mice by adoptive transfer of ex vivo expanded regulatory T cells,” Journal of Immunology, vol. 177, no. 3, pp. 1451–1459, 2006.
  159. K. J. Scalapino and D. I. Daikh, “Suppression of glomerulonephritis in NZB/NZW lupus prone mice by adoptive transfer of Ex vivo expanded regulatory T cells,” PLoS One, vol. 4, no. 6, Article ID e6031, 2009. View at Publisher · View at Google Scholar · View at PubMed
  160. Z. Gu, K. Akiyama, X. Ma et al., “Transplantation of umbilical cord mesenchymal stem cells alleviates lupus nephritis in MRL/lpr mice,” Lupus, vol. 19, no. 13, pp. 1502–1514, 2010. View at Publisher · View at Google Scholar · View at PubMed
  161. J. Liang, H. Zhang, B. Hua et al., “Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus: a pilot clinical study,” Annals of the Rheumatic Diseases, vol. 69, no. 8, pp. 1423–1429, 2010. View at Publisher · View at Google Scholar · View at PubMed
  162. J. Chang, S. Hung, H. Wu, et al., “Therapeutic effects of umbilical cord blood-derived mesenchymal stem cell transplantation in experimental lupus nephritis,” Cell Transplantation. In press.
  163. F. Schena, C. Gambini, A. Gregorio et al., “Interferon-γ-dependent inhibition of B cell activation by bone marrow-derived mesenchymal stem cells in a murine model of systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 62, no. 9, pp. 2776–2786, 2010. View at Publisher · View at Google Scholar · View at PubMed
  164. M. Duvic, A. D. Steinberg, and L. W. Klassen, “Effect of the anti-estrogen, nafoxidine, on NZB/W autoimmune disease,” Arthritis and Rheumatism, vol. 21, no. 4, pp. 414–417, 1978.
  165. A. D. Sturgess, D. T. P. Evans, I. R. Mackay, and A. Riglar, “Effects of the oestrogen antagonist tamoxifen on disease indices in systemic lupus erythematosus,” Journal of Clinical and Laboratory Immunology, vol. 13, no. 1, pp. 11–14, 1984.
  166. Z. M. Sthoeger, H. Zinger, and E. Mozes, “Beneficial effects of the anti-oestrogen tamoxifen on systemic lupus erythematosus of (NZB×NZW)F1 female mice are associated with specific reduction of IgG3 autoantibodies,” Annals of the Rheumatic Diseases, vol. 62, no. 4, pp. 341–346, 2003. View at Publisher · View at Google Scholar
  167. W. M. Wu, B. F. Lin, Y. C. Su, J. L. Suen, and B. L. Chiang, “Tamoxifen decreases renal inflammation and alleviates disease severity autoimmune NZB/W F1 mice,” Scandinavian Journal of Immunology, vol. 52, no. 4, pp. 393–400, 2000. View at Publisher · View at Google Scholar
  168. N. I. Abdou, V. Rider, C. Greenwell, X. Li, and B. F. Kimler, “Fulvestrant (Faslodex), an estrogen selective receptor downregulator, in therapy of women with systemic lupus erythematosus. Clinical, serologic, bone density, and T cell activation marker studies: a double-blind placebo-controlled trial,” Journal of Rheumatology, vol. 35, no. 5, pp. 797–803, 2008.
  169. Y. Zhang, S. Saha, G. Rosenfeld, J. Gonzalez, K. P. Pepeljugoski, and E. Peeva, “Raloxifene modulates estrogen-mediated B cell autoreactivity in NZB/W F1 mice,” Journal of Rheumatology, vol. 37, no. 8, pp. 1646–1657, 2010. View at Publisher · View at Google Scholar · View at PubMed
  170. X. J. Yan, M. Qi, G. Telusma et al., “Indole-3-carbinol improves survival in lupus-prone mice by inducing tandem B- and T-cell differentiation blockades,” Clinical Immunology, vol. 131, no. 3, pp. 481–494, 2009. View at Publisher · View at Google Scholar · View at PubMed
  171. J. R. Roubinian, R. Papoian, and N. Talal, “Androgenic hormones modulate autoantibody responses and improve survival in murine lupus,” Journal of Clinical Investigation, vol. 59, no. 6, pp. 1066–1070, 1977.
  172. L. Moszkorzová, Z. Lacinová, J. Marek, L. Musilová, A. Dohnalová, and C. Dostál, “Hyperprolactinaemia in patients with systemic lupus erythematous,” Clinical and Experimental Rheumatology, vol. 20, no. 6, pp. 807–812, 2002.
  173. A. D. Steinberg, J. B. Roths, and E. D. Murphy, “Effects of thymectomy or androgen administration upon the autoimmune disease of MRL/Mp-lpr mice,” Journal of Immunology, vol. 125, no. 2, pp. 871–873, 1980.
  174. H. Amital, M. Heilweil, R. Ulmansky et al., “Treatment with a laminin-derived peptide suppresses lupus nephritis,” Journal of Immunology, vol. 175, no. 8, pp. 5516–5523, 2005.
  175. F. Monneaux, J. M. Lozano, M. E. Patarroyo, J. P. Briand, and S. Muller, “T cell recognition and therapeutic effect of a phosphorylated synthetic peptide of the 70K snRNP protein administered in MRL/lpr mice,” European Journal of Immunology, vol. 33, no. 2, pp. 287–296, 2003. View at Publisher · View at Google Scholar · View at PubMed
  176. N. Page, N. Schall, J.-M. Strub et al., “The spliceosomal phosphopeptide P140 controls the lupus disease by interacting with the HSC70 protein and via a mechanism mediated by γδ T cells,” PLoS One, vol. 4, no. 4, article e5273, 2009. View at Publisher · View at Google Scholar · View at PubMed
  177. S. Muller, F. Monneaux, N. Schal et al., “Spliceosomal peptide P140 for immunotherapy of systemic lupus erythematosus: results of an early phase II clinical trial,” Arthritis and Rheumatism, vol. 58, no. 12, pp. 3873–3883, 2008. View at Publisher · View at Google Scholar · View at PubMed
  178. A. Kaliyaperumal, M. A. Michaels, and S. K. Datta, “Antigen-specific therapy of murine lupus nephritis using nucleosomal peptides: tolerance spreading impairs pathogenic function of autoimmune T and B cells,” Journal of Immunology, vol. 162, no. 10, pp. 5775–5783, 1999.
  179. Y. Ozaki, R. Amakawa, T. Ito et al., “Treatment with a consensus peptide based on amino acid sequences in autoantibodies prevents T cell activation by autoantigens and delays disease onset in murine lupus,” Arthritis and Rheumatism, vol. 44, no. 2, pp. 432–441, 2001. View at Publisher · View at Google Scholar
  180. B. H. Hahn, R. P. Singh, A. La Cava, and F. M. Ebling, “Tolerogenic treatment of lupus mice with consensus peptide induces Foxp3 -expressing, apoptosis-resistant, TGFβ-secreting CD8+ T cell suppressors,” Journal of Immunology, vol. 175, no. 11, pp. 7728–7737, 2005.
  181. R. P. Singh, A. La Cava, and B. H. Hahn, “pConsensus peptide induces tolerogenic CD8+ T cells in lupus-prone (NZB × NZW)F mice by differentially regulating Foxp3 and PD1 molecules,” Journal of Immunology, vol. 180, no. 4, pp. 2069–2080, 2008.
  182. E. Mozes and A. Sharabi, “A novel tolerogenic peptide, hCDR1, for the specific treatment of systemic lupus erythematosus,” Autoimmunity Reviews, vol. 10, no. 1, pp. 22–26, 2010. View at Publisher · View at Google Scholar · View at PubMed
  183. N. Mishra, C. M. Reilly, D. R. Brown, P. Ruiz, and G. S. Gilkeson, “Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse,” Journal of Clinical Investigation, vol. 111, no. 4, pp. 539–552, 2003. View at Publisher · View at Google Scholar
  184. M. Frese-Schaper, J. Zbaeren, M. Gugger, M. Monestier, and S. Frese, “Reversal of established lupus nephritis and prolonged survival of New Zealand Black x New Zealand White mice treated with the topoisomerase I inhibitor irinotecan,” Journal of Immunology, vol. 184, no. 4, pp. 2175–2182, 2010. View at Publisher · View at Google Scholar · View at PubMed
  185. D. A. De Albuquerque, V. Saxena, D. E. Adams et al., “An ACE inhibitor reduces Th2 cytokines and TGF-β1 and TGF-β2 isoforms in murine lupus nephritis,” Kidney International, vol. 65, no. 3, pp. 846–859, 2004. View at Publisher · View at Google Scholar · View at PubMed
  186. S. Lawman, C. Mauri, E. C. Jury, H. T. Cook, and M. E. Ehrenstein, “Atorvastatin inhibits autoreactive B cell activation and delays lupus development in New Zealand black/white F1 mice,” Journal of Immunology, vol. 173, no. 12, pp. 7641–7646, 2004.
  187. H. Shimazu, K. Kinoshita, S. Hino et al., “Effect of combining ACE inhibitor and statin in lupus-prone mice,” Clinical Immunology, vol. 136, no. 2, pp. 188–196, 2010. View at Publisher · View at Google Scholar · View at PubMed
  188. O. Kulkarni, R. D. Pawar, W. Purschke et al., “Spiegelmer inhibition of CCL2/MCP-1 ameliorates lupus nephritis in MRL-(Fas)lpr mice,” Journal of the American Society of Nephrology, vol. 18, no. 8, pp. 2350–2358, 2007. View at Publisher · View at Google Scholar · View at PubMed
  189. F. Chen, M. A. Maldonado, M. Madaio, and R. A. Eisenberg, “The role of host (endogenous) T cells in chronic graft-versus-host autoimmune disease,” Journal of Immunology, vol. 161, no. 11, pp. 5880–5885, 1998.
  190. A. Choudhury, M. A. Maldonado, P. L. Cohen, and R. A. Eisenberg, “The role of host CD4 T cells in the pathogenesis of the chronic graft-versus-host model of systemic lupus erythematosus,” Journal of Immunology, vol. 174, no. 12, pp. 7600–7609, 2005.
  191. A. Choudhury, P. L. Cohen, and R. A. Eisenberg, “B cells require “nurturing” by CD4 T cells during development in order to respond in chronic graft-versus-host model of systemic lupus erythematosus,” Clinical Immunology, vol. 136, no. 1, pp. 105–115, 2010. View at Publisher · View at Google Scholar · View at PubMed
  192. A. C. Chan and P. J. Carter, “Therapeutic antibodies for autoimmunity and inflammation,” Nature Reviews Immunology, vol. 10, no. 5, pp. 301–316, 2010. View at Publisher · View at Google Scholar · View at PubMed
  193. N. Yazawa, Y. Hamaguchi, J. C. Poe, and T. F. Tedder, “Immunotherapy using unconjugated CD19 monoclonal antibodies in animal models for B lymphocyte malignancies and autoimmune disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 42, pp. 15178–15183, 2005. View at Publisher · View at Google Scholar · View at PubMed
  194. Y. Hamaguchi, J. Uchida, D. W. Cain et al., “The peritoneal cavity provides a protective niche for B1 and conventional B lymphocytes during anti-CD20 immunotherapy in mice,” Journal of Immunology, vol. 174, no. 7, pp. 4389–4399, 2005.
  195. D. J. DiLillo, Y. Hamaguchi, Y. Ueda et al., “Maintenance of long-lived plasma cells and serological memory despite mature and memory B cell depletion during CD20 immunotherapy in mice,” Journal of Immunology, vol. 180, no. 1, pp. 361–371, 2008.