About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 275302, 9 pages
http://dx.doi.org/10.1155/2011/275302
Review Article

Role of PIR-B in Autoimmune Glomerulonephritis

Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo, Sendai 980-8575, Japan

Received 28 July 2010; Accepted 7 September 2010

Academic Editor: Monica Fedele

Copyright © 2011 Toshiyuki Takai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Hayami, D. Fukuta, Y. Nishikawa et al., “Molecular cloning of a novel murine cell-surface glycoprotein homologous to killer cell inhibitory receptors,” Journal of Biological Chemistry, vol. 272, no. 11, pp. 7320–7327, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Kubagawa, P. D. Burrows, and M. D. Cooper, “A novel pair of immunoglobulin-like receptors expressed by B cells and myeloid cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 10, pp. 5261–5266, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Takai, “Paired immunoglobulin-like receptors and their MHC class I recognition,” Immunology, vol. 115, no. 4, pp. 433–440, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. T. Takai, “A novel recognition system for MHC class I molecules constituted by PIR,” Advances in Immunology, vol. 88, pp. 161–192, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. H. Kubagawa, M. D. Cooper, C. C. Chen, et al., “Paired immunoglobulin-like receptors of activating and inhibitory types,” Current Topics in Microbiology and Immunology, vol. 244, pp. 137–149, 1999.
  6. M. Colonna, H. Nakajima, and M. Cella, “A family of inhibitory and activating Ig-like receptors that modulate function of lymphoid and myeloid cells,” Seminars in Immunology, vol. 12, no. 2, pp. 121–127, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. M. Colonna, “Inhibitory receptors: friend or foe?” Lancet, vol. 361, no. 9363, pp. 1067–1068, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. M. Shiroishi, K. Kuroki, L. Rasubala et al., “Structural basis for recognition of the nonclassical MHC molecule HLA-G by the leukocyte Ig-like receptor B2 (LILRB2/LIR2/ILT4/CD85d),” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 44, pp. 16412–16417, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. B. E. Willcox, L. M. Thomas, and P. J. Bjorkman, “Crystal structure of HLA-A2 bound to LIR-1, a host and viral major histocompatibility complex receptor,” Nature Immunology, vol. 4, no. 9, pp. 913–919, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. A. Ujike, K. Takeda, A. Nakamura, S. Ebihara, K. Akiyama, and T. Takai, “Impaired dendritic cell maturation and increased TH2 responses in PIR-B/ mice,” Nature Immunology, vol. 3, no. 6, pp. 542–548, 2002. View at Publisher · View at Google Scholar · View at PubMed
  11. T. Kubo, Y. Uchida, Y. Watanabe et al., “Augmented TLR9-induced Btk activation in PIR-B-deficient B-1 cells provokes excessive autoantibody production and autoimmunity,” Journal of Experimental Medicine, vol. 206, no. 9, pp. 1971–1982, 2009. View at Publisher · View at Google Scholar · View at PubMed
  12. A. Nakamura, E. Kobayashi, and T. Takai, “Exacerbated graft-versus-host disease in Pirb/ mice,” Nature Immunology, vol. 5, no. 6, pp. 623–629, 2004. View at Publisher · View at Google Scholar · View at PubMed
  13. S. Endo, Y. Sakamoto, E. Kobayashi, A. Nakamura, and T. Takai, “Regulation of cytotoxic T lymphocyte triggering by PIR-B on dendritic cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 38, pp. 14515–14520, 2008. View at Publisher · View at Google Scholar · View at PubMed
  14. A. Masuda, A. Nakamura, T. Maeda, Y. Sakamoto, and T. Takai, “Cis binding between inhibitory receptors and MHC class I can regulate mast cell activation,” Journal of Experimental Medicine, vol. 204, no. 4, pp. 907–920, 2007. View at Publisher · View at Google Scholar · View at PubMed
  15. S. Pereira, H. Zhang, T. Takai, and C. A. Lowell, “The inhibitory receptor PIR-B negatively regulates neutrophil and macrophage integrin signaling,” Journal of Immunology, vol. 173, no. 9, pp. 5757–5765, 2004.
  16. H. Zhang, F. Meng, C.-L. Chu, T. Takai, and C. A. Lowell, “The Src family kinases Hck and Fgr negatively regulate neutrophil and dendritic cell chemokine signaling via PIR-B,” Immunity, vol. 22, no. 2, pp. 235–246, 2005. View at Publisher · View at Google Scholar · View at PubMed
  17. A. Munitz, M. L. McBride, J. S. Bernstein, and M. E. Rothenberg, “A dual activation and inhibition role for the paired immunoglobulin-like receptor B in eosinophils,” Blood, vol. 111, no. 12, pp. 5694–5703, 2008. View at Publisher · View at Google Scholar · View at PubMed
  18. I. Torii, S. Oka, M. Hotomi et al., “PIR-B-deficient mice are susceptible to Salmonella infection,” Journal of Immunology, vol. 181, no. 6, pp. 4229–4239, 2008.
  19. M. Nakayama, D. M. Underhill, T. W. Petersen et al., “Paired Ig-like receptors bind to bacteria and shape TLR-mediated cytokine production,” Journal of Immunology, vol. 178, no. 7, pp. 4250–4259, 2007.
  20. J. Syken, T. GrandPre, P. O. Kanold, and C. J. Shatz, “PirB restricts ocular-dominance plasticity in visual cortex,” Science, vol. 313, no. 5794, pp. 1795–1800, 2006. View at Publisher · View at Google Scholar · View at PubMed
  21. J. K. Atwal, J. Pinkston-Gosse, J. Syken et al., “PirB is a functional receptor for myelin inhibitors of axonal regeneration,” Science, vol. 322, no. 5903, pp. 967–970, 2008. View at Publisher · View at Google Scholar · View at PubMed
  22. M. Imada, K. Masuda, R. Satoh et al., “Ectopically expressed PIR-B on T cells constitutively binds to MHC class I and attenuates T helper type 1 responses,” International Immunology, vol. 21, no. 10, pp. 1151–1161, 2009. View at Publisher · View at Google Scholar · View at PubMed
  23. M. Colonna, F. Navarro, T. Bellón et al., “A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells,” Journal of Experimental Medicine, vol. 186, no. 11, pp. 1809–1818, 1997. View at Publisher · View at Google Scholar
  24. Y. Yamashita, D. Fukuta, A. Tsuji et al., “Genomic structures and chromosomal location of p91, a novel murine regulatory receptor family,” Journal of Biochemistry, vol. 123, no. 2, pp. 358–368, 1998.
  25. H. Kubagawa, C.-C. Chen, L. H. Ho et al., “Biochemical nature and cellular distribution of the paired immunoglobulin-like receptors, PIR-A and PIR-B,” Journal of Experimental Medicine, vol. 189, no. 2, pp. 309–317, 1999. View at Publisher · View at Google Scholar
  26. Y. Mori, S. Tsuji, M. Inui et al., “Inhibitory immunoglobulin-like receptors LILRB and PIR-B negatively regulate osteoclast development,” Journal of Immunology, vol. 181, no. 7, pp. 4742–4751, 2008.
  27. L. M. Boulanger, “Immune proteins in brain development and synaptic plasticity,” Neuron, vol. 64, no. 1, pp. 93–109, 2009. View at Publisher · View at Google Scholar · View at PubMed
  28. M. T. Filbin, “PirB, a second receptor for the myelin inhibitors of axonal regeneration Nogo66, MAG, and OMgp: implications for regeneration in vivo,” Neuron, vol. 60, no. 5, pp. 740–742, 2008. View at Publisher · View at Google Scholar · View at PubMed
  29. M.-A. Doucey, L. Scarpellino, J. Zimmer et al., “Cis association of Ly49A with MHC class I restricts natural killer cell inhibition,” Nature Immunology, vol. 5, no. 3, pp. 328–336, 2004. View at Publisher · View at Google Scholar · View at PubMed
  30. L. Scarpellino, F. Oeschger, P. Guillaume et al., “Interactions of Ly49 family receptors with MHC class I ligands in trans and cis,” Journal of Immunology, vol. 178, no. 3, pp. 1277–1284, 2007.
  31. J. Back, E. L. Malchiodi, S. Cho et al., “Distinct conformations of Ly49 natural killer cell receptors mediate MHC class I recognition in trans and cis,” Immunity, vol. 31, no. 4, pp. 598–608, 2009. View at Publisher · View at Google Scholar · View at PubMed
  32. K. E. Andersson, G. S. Williams, D. M. Davis, and P. Höglund, “Quantifying the reduction in accessibility of the inhibitory NK cell receptor Ly49A caused by binding MHC class I proteins in cis,” European Journal of Immunology, vol. 37, no. 2, pp. 516–527, 2007. View at Publisher · View at Google Scholar · View at PubMed
  33. K. Masuda, H. Kubagawa, T. Ikawa et al., “Prethymic T-cell development defined by the expression of paired immunoglobulin-like receptors,” EMBO Journal, vol. 24, no. 23, pp. 4052–4060, 2005. View at Publisher · View at Google Scholar · View at PubMed
  34. A. Munitz, E. T. Cole, A. Beichler et al., “Paired immunoglobulin-like receptor B (PIR-B) negatively regulates macrophage activation in experimental colitis,” Gastroenterology, vol. 139, no. 2, pp. 530–541, 2010. View at Publisher · View at Google Scholar · View at PubMed
  35. S. Bolland and J. V. Ravetch, “Spontaneous autoimmune disease in FcγRIIB-deficient mice results from strain-specific epistasis,” Immunity, vol. 13, no. 2, pp. 277–285, 2000.
  36. T. Takai, “Roles of Fc receptors in autoimmunity,” Nature Reviews Immunology, vol. 2, no. 8, pp. 580–592, 2002.
  37. J. G. Cyster and C. C. Goodnow, “Tuning antigen receptor signaling by CD22: integrating cues from antigens and the microenvironment,” Immunity, vol. 6, no. 5, pp. 509–517, 1997. View at Publisher · View at Google Scholar
  38. L. Nitschke, R. Carsetti, B. Ocker, G. Köhler, and M. C. Lamers, “CD22 is a negative regulator of B-cell receptor signalling,” Current Biology, vol. 7, no. 2, pp. 133–143, 1997.
  39. J. R. Parnes and C. Pan, “CD72, a negative regulator of B-cell responsiveness,” Immunological Reviews, vol. 176, pp. 75–85, 2000.
  40. L. Nitschke, “CD22 and Siglec-G: B-cell inhibitory receptors with distinct functions,” Immunological Reviews, vol. 230, no. 1, pp. 128–143, 2009. View at Publisher · View at Google Scholar · View at PubMed
  41. M. L. Hermiston, J. Zikherman, and J. W. Zhu, “CD45, CD148, and Lyp/Pep: critical phosphatases regulating Src family kinase signaling networks in immune cells,” Immunological Reviews, vol. 228, no. 1, pp. 288–311, 2009. View at Publisher · View at Google Scholar · View at PubMed
  42. L. Genestier, M. Taillardet, P. Mondiere, H. Gheit, C. Bella, and T. Defrance, “TLR agonists selectively promote terminal plasma cell differentiation of B cell subsets specialized in thymus-independent responses,” Journal of Immunology, vol. 178, no. 12, pp. 7779–7786, 2007.
  43. K. R. Alugupalli, J. M. Leong, R. T. Woodland, M. Muramatsu, T. Honjo, and R. M. Gerstein, “B1b lymphocytes confer T cell-independent long-lasting immunity,” Immunity, vol. 21, no. 3, pp. 379–390, 2004. View at Publisher · View at Google Scholar · View at PubMed
  44. K. M. Haas, J. C. Poe, D. A. Steeber, and T. F. Tedder, “B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae,” Immunity, vol. 23, no. 1, pp. 7–18, 2005. View at Publisher · View at Google Scholar · View at PubMed
  45. B. He, X. Qiao, and A. Cerutti, “CpG DNA induces IgG class switch DNA recombination by activating human B cells through an innate pathway that requires TLR9 and cooperates with IL-10,” Journal of Immunology, vol. 173, no. 7, pp. 4479–4491, 2004.
  46. M. Gururajan, J. Jacob, and B. Pulendran, “Toll-like receptor expression and responsiveness of distinct murine splenic and mucosal B-cell subsets,” PLoS ONE, vol. 2, no. 9, article e863, 2007. View at Publisher · View at Google Scholar · View at PubMed
  47. M. Murakami, H. Yoshioka, T. Shirai, T. Tsubata, and T. Honjo, “Prevention of autoimmune symptoms in autoimmune-prone mice by elimination of B-1 cells,” International Immunology, vol. 7, no. 5, pp. 877–882, 1995.
  48. E. Montecino-Rodriguez and K. Dorshkind, “New perspectives in B-1 B cell development and function,” Trends in Immunology, vol. 27, no. 9, pp. 428–433, 2006. View at Publisher · View at Google Scholar · View at PubMed
  49. L. N. Ho, T. Uehara, C.-G. Chen, H. Kubagawa, and M. D. Cooper, “Constitutive tyrosine phosphorylation of the inhibitory paired Ig-like receptor PIR-B,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 26, pp. 15086–15090, 1999. View at Publisher · View at Google Scholar
  50. A. Maeda, A. M. Scharenberg, S. Tsukada, J. B. Bolen, J.-P. Kinet, and T. Kurosaki, “Paired immunoglobulin-like receptor B (PIR-B) inhibits BCR-induced activation of Syk and Btk by SHP-1,” Oncogene, vol. 18, no. 14, pp. 2291–2297, 1999.
  51. H. An, J. Hou, J. Zhou et al., “Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1,” Nature Immunology, vol. 9, no. 5, pp. 542–550, 2008. View at Publisher · View at Google Scholar · View at PubMed
  52. M. Gilliet, W. Cao, and Y.-J. Liu, “Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases,” Nature Reviews Immunology, vol. 8, no. 8, pp. 594–606, 2008. View at Publisher · View at Google Scholar · View at PubMed
  53. S. L. Doyle, C. A. Jefferies, C. Feighery, and L. A. J. O'Neill, “Signaling by toll-like receptors 8 and 9 requires Bruton's tyrosine kinase,” Journal of Biological Chemistry, vol. 282, no. 51, pp. 36953–36960, 2007. View at Publisher · View at Google Scholar · View at PubMed
  54. K.-G. Lee, S. Xu, E.-T. Wong, V. Tergaonkar, and K.-P. Lam, “Bruton's tyrosine kinase separately regulates NFκB p65RelA activation and cytokine interleukin (IL)-10/IL-12 production in TLR9-stimulated B cells,” Journal of Biological Chemistry, vol. 283, no. 17, pp. 11189–11198, 2008. View at Publisher · View at Google Scholar · View at PubMed
  55. L. A. D. Bradley, A. K. Sweatman, R. C. Lovering et al., “Mutation detection in the X-linked agammaglobulinemia gene, BTK, using single strand conformation polymorphism analysis,” Human Molecular Genetics, vol. 3, no. 1, pp. 79–83, 1994.
  56. S. Hashimoto, S. Tsukada, M. Matsushita et al., “Identification of Bruton's tyrosine kinase (Btk) gene mutations and characterization of the derived proteins in 35 X-linked agammaglobulinemia families: a nationwide study of Btk deficiency in Japan,” Blood, vol. 88, no. 2, pp. 561–573, 1996.
  57. W. N. Khan, F. W. Alt, R. M. Gerstein et al., “Defective B cell development and function in Btk-deficient mice,” Immunity, vol. 3, no. 3, pp. 283–299, 1995.
  58. C. V. Rothlin, S. Ghosh, E. I. Zuniga, M. B. A. Oldstone, and G. Lemke, “TAM Receptors Are Pleiotropic Inhibitors of the Innate Immune Response,” Cell, vol. 131, no. 6, pp. 1124–1136, 2007. View at Publisher · View at Google Scholar · View at PubMed
  59. M. M. Whitmore, A. Iparraguirre, L. Kubelka, W. Weninger, T. Hai, and B. R. G. Williams, “Negative regulation of TLR-signaling pathways by activating transcription factor-3,” Journal of Immunology, vol. 179, no. 6, pp. 3622–3630, 2007.
  60. H. J. Martin, M. L. Jae, D. Walls, and S. D. Hayward, “Manipulation of the toll-like receptor 7 signaling pathway by Epstein-Barr virus,” Journal of Virology, vol. 81, no. 18, pp. 9748–9758, 2007. View at Publisher · View at Google Scholar · View at PubMed
  61. T. Uehara, M. Bléry, D.-W. Kang et al., “Inhibition of IgE-mediated mast cell activation by the paired Ig-like receptor PIR-B,” Journal of Clinical Investigation, vol. 108, no. 7, pp. 1041–1050, 2001. View at Publisher · View at Google Scholar
  62. M. Bléry, H. Kubagawa, C.-C. Chen, F. Vély, M. D. Cooper, and E. Vivier, “The paired Ig-like receptor PIR-B is an inhibitory receptor that recruits the protein-tyrosine phosphatase SHP-1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 5, pp. 2446–2451, 1998. View at Publisher · View at Google Scholar
  63. A. Maeda, M. Kurosaki, M. Ono, T. Takai, and T. Kurosaki, “Requirement of SH2-containing protein tyrosine phosphatases SHP-1 and SHP-2 for paired immunoglobulin-like receptor B (PIR-B)-mediated inhibitory signal,” Journal of Experimental Medicine, vol. 187, no. 8, pp. 1355–1360, 1998. View at Publisher · View at Google Scholar
  64. R. R. Hardy, K. Hayakawa, M. Shimizu, K. Yamasaki, and T. Kishimoto, “Rheumatoid factor secretion from human Leu-1+ B cells,” Science, vol. 236, no. 4797, pp. 81–83, 1987.
  65. P. Youinou, L. Mackenzie, P. Katsikis et al., “The relationship between CD5-expressing B lymphocytes and serologic abnormalities in rheumatoid arthritis patients and their relatives,” Arthritis and Rheumatism, vol. 33, no. 3, pp. 339–348, 1990.
  66. J. A. Sowden, P. J. Roberts-Thomson, and H. Zola, “Evaluation of CD5-positive B cells in blood and synovial fluid of patients with rheumatic diseases,” Rheumatology International, vol. 7, no. 6, pp. 255–259, 1987.
  67. E. A. Leadbetter, I. R. Rifkin, A. M. Hohlbaum, B. C. Beaudette, M. J. Shlomchik, and A. Marshak-Rothstein, “Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors,” Nature, vol. 416, no. 6881, pp. 603–607, 2002. View at Publisher · View at Google Scholar · View at PubMed
  68. S. Izui and R. A. Eisenberg, “Circulating anti DNA-rheumatoid factor complexes in MRL/1 mice,” Clinical Immunology and Immunopathology, vol. 15, no. 3, pp. 536–551, 1980.
  69. Y. Gyotoku, M. Abdelmoula, and F. Spertini, “Cryoglobulinemia induced by monoclonal immunoglobulin G rheumatoid factors derived from autoimmune MRL/MpJ-lpr/lpr mice,” Journal of Immunology, vol. 138, no. 11, pp. 3785–3792, 1987.