About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 305086, 7 pages
http://dx.doi.org/10.1155/2011/305086
Research Article

Consumption of Hydrogen Water Reduces Paraquat-Induced Acute Lung Injury in Rats

1Department of Diving Medicine, Faculty of Naval Medicine, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
2Divers Alert Network, Center for Hyperbaric Medicine and Environmental Physiology, Duke University, Durham, NC 27710, USA

Received 3 September 2010; Accepted 9 January 2011

Academic Editor: Albert Zomaya

Copyright © 2011 Shulin Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Bismuth, R. Garnier, F. J. Baud, J. Muszynski, and C. Keyes, “Paraquat poisoning: an overview of the current status,” Drug Safety, vol. 5, no. 4, pp. 243–251, 1990. View at Scopus
  2. J. S. Bus and J. E. Gibson, “Paraquat: model for oxidant-initiated toxicity,” Environmental Health Perspectives, vol. 55, pp. 37–46, 1984. View at Scopus
  3. M. A. Mussi and N. B. Calcaterra, “Paraquat-induced oxidative stress response during amphibian early embryonic development,” Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, vol. 151, no. 2, pp. 240–247, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. Zhou, X. Chang, C. Shao, Q. Wu, Q. Wu, and M. Huang, “Pyrrolidine dithiocarbamate attenuates paraquat-induced lung injury in rats,” Journal of Biomedicine and Biotechnology, vol. 2009, Article ID 619487, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. S. T. Y. Yeh, H. R. Guo, YU. S. Su et al., “Protective effects of N-acetylcysteine treatment post acute paraquat intoxication in rats and in human lung epithelial cells,” Toxicology, vol. 223, no. 3, pp. 181–190, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. P. Jaeger, J. Sauder, and J. Kopferschmitt, “Mechanisms of paraquat toxicity and herapeutic,” in Paraquat Poisoning Mechanisms Prevention Treatment, C. Bismuth and A. H. Hall, Eds., pp. 141–159, Marcel Dekker, New York, NY, USA, 1995.
  7. Z. E. Suntres, “Role of antioxidants in paraquat toxicity,” Toxicology, vol. 180, no. 1, pp. 65–77, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Halliwell and J. M. C. Gutteridge, “Biologically relevant metal ion-dependent hydroxyl radical generation. An update,” FEBS Letters, vol. 307, no. 1, pp. 108–112, 1992. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Halliwell and J. M. C. Gutteridge, “Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts,” Archives of Biochemistry and Biophysics, vol. 246, no. 2, pp. 501–514, 1986. View at Scopus
  10. H. I. Berisha, H. Pakbaz, A. Absood, and S. I. Said, “Nitric oxide as a mediator of oxidant lung injury due to paraquat,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 16, pp. 7445–7449, 1994. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Nemery and R. J. van Klaveren, “NO wonder paraquat is toxic,” Human & Experimental Toxicology, vol. 14, no. 3, pp. 308–309, 1995. View at Scopus
  12. M. Dole, F. R. Wilson, and W. P. Fife, “Hyperbaric hydrogen therapy: a possible treatment for cancer,” Science, vol. 190, no. 4210, pp. 152–154, 2007.
  13. B. Gharib, S. Hanna, O. M. S. Abdallahi, H. Lepidi, B. Gardette, and M. De Reggi, “Anti-inflammatory properties of molecular hydrogen: investigation on parasite-induced liver inflammation,” Comptes Rendus de l'Academie des Sciences - Serie III, vol. 324, no. 8, pp. 719–724, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Ohsawa, M. Ishikawa, K. Takahashi et al., “Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals,” Nature Medicine, vol. 13, no. 6, pp. 688–694, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. K. I. Fukuda, S. Asoh, M. Ishikawa, Y. Yamamoto, I. Ohsawa, and S. Ohta, “Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress,” Biochemical and Biophysical Research Communications, vol. 361, no. 3, pp. 670–674, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Hayashida, M. Sano, I. Ohsawa et al., “Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia-reperfusion injury,” Biochemical and Biophysical Research Communications, vol. 37, no. 1, pp. 330–335, 2008.
  17. J. Cai, Z. Kang, W. W. Liu et al., “Hydrogen therapy reduces apoptosis in neonatal hypoxia-ischemia rat model,” Neuroscience Letters, vol. 441, no. 2, pp. 167–172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Kajiyama, G. Hasegawa, M. Asano et al., “Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance,” Nutrition Research, vol. 28, no. 3, pp. 137–143, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Nakashima-Kamimura, T. Mori, I. Ohsawa, S. Asoh, and S. Ohta, “Molecular hydrogen alleviates nephrotoxicity induced by an anti-cancer drug cisplatin without compromising anti-tumor activity in mice,” Cancer Chemotherapy and Pharmacology, vol. 64, no. 4, pp. 753–761, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Fu, M. Ito, Y. Fujita et al., “Molecular hydrogen is protective against 6-hydroxydopamine-induced nigrostriatal degeneration in a rat model of Parkinson's disease,” Neuroscience Letters, vol. 453, no. 2, pp. 81–85, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. F. Mao, X. F. Zheng, J. M. Cai et al., “Hydrogen-rich saline reduces lung injury induced by intestinal ischemia/reperfusion in rats,” Biochemical and Biophysical Research Communications, vol. 381, no. 4, pp. 602–605, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Zheng, K. Liu, Z. Kang et al., “Saturated hydrogen saline protects the lung against oxygen toxicity,” Undersea and Hyperbaric Medicine, vol. 37, no. 3, pp. 185–192, 2010. View at Scopus
  23. C. S. Huang, A. Nakao, S. Lee, et al., “Hydrogen gas inhalation attenuates ventilator-induced lung injury in mice,” American Journal of Respiratory and Critical Care Medicine, vol. 181, A3751 pages, 2010.
  24. I. Ohsawa, K. Nishimaki, K. Yamagata, M. Ishikawa, and S. Ohta, “Consumption of hydrogen water prevents atherosclerosis in apolipoprotein E knockout mice,” Biochemical and Biophysical Research Communications, vol. 377, no. 4, pp. 1195–1198, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Nagata, N. Nakashima-Kamimura, T. Mikami, I. Ohsawa, and S. Ohta, “Consumption of molecular hydrogen prevents the stress-induced impairments in hippocampus-dependent learning tasks during chronic physical restraint in mice,” Neuropsychopharmacology, vol. 34, no. 2, pp. 501–508, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. E. Suntres, S. R. Hepworth, and P. N. Shek, “Protective effect of liposome-associated α-tocopherol against paraquat-induced acute lung toxicity,” Biochemical Pharmacology, vol. 44, no. 9, pp. 1811–1818, 1992. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Addo, S. Ramdial, and T. Poon-King, “High dosage cyclophosphamide and dexamethasone treatment of paraquat poisoning with 75% survival,” West Indian Medical Journal, vol. 33, no. 4, pp. 220–226, 1984. View at Scopus
  28. J. L. Lin, M. L. Leu, Y. C. Liu, and G. H. Chen, “A prospective clinical trial of pulse therapy with glucocorticoid and cyclophosphamide in moderate to severe paraquat-poisoned patients,” American Journal of Respiratory and Critical Care Medicine, vol. 159, no. 2, pp. 357–360, 1999. View at Scopus
  29. N. A. Buckley, “Pulse corticosteroids and cyclophosphamide in paraquat poisoning,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 2, p. 585, 2001. View at Scopus
  30. M. Jurima-Romet, R. F. Barber, J. Demeester, and P. N. Shek, “Distribution studies of liposome-encapsulated glutathione administered to the lung,” International Journal of Pharmaceutics, vol. 63, no. 3, pp. 227–235, 1990. View at Publisher · View at Google Scholar · View at Scopus
  31. R. N. Puri and A. Meister, “Transport of glutathione, as γ-glutamylcysteinylglycyl ester, into liver and kidney,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 17 I, pp. 5258–5260, 1983. View at Scopus
  32. L. J. Smith, J. Anderson, and M. Shamsuddin, “Glutathione localization and distribution after intratracheal instillation: implications for treatment,” American Review of Respiratory Disease, vol. 145, no. 1, pp. 153–159, 1992. View at Scopus
  33. Z. E. Suntres and P. N. Shek, “Liposomal α-tocopherol alleviates the progression of paraquat-induced lung damage,” Journal of Drug Targeting, vol. 2, no. 6, pp. 493–500, 1995. View at Scopus
  34. M. J. Poznansky and R. L. Juliano, “Biological approaches to the controlled delivery of drugs: a critical review,” Pharmacological Reviews, vol. 36, no. 4, pp. 277–336, 1984. View at Scopus
  35. J. F. Turrens, J. D. Crapo, and B. A. Freeman, “Protection against oxygen toxicity by intravenous injection of liposome-entrapped catalase and superoxide dismutase,” Journal of Clinical Investigation, vol. 73, no. 1, pp. 87–95, 1984. View at Scopus
  36. R. V. Padmanabhan, R. Gudapaty, and I. E. Liener, “Protection against pulmonary oxygen toxicity in rats by the intratracheal administration of liposome-encapsulated superoxide dismutase or catalase,” American Review of Respiratory Disease, vol. 132, no. 1, pp. 164–167, 1985.
  37. J. H. Senior, G. Gregoriadis, D. P.R. Muller, Y. V. Pathak, and N. McIntyre, “Liposomes facilitate uptake of lipid-soluble vitamins after oral delivery to normal and bile-duct obstructed rats,” Biochemical Society Transactions, vol. 17, no. 1, pp. 121–122, 1989.
  38. M. Kajiya, M. J. B. Silva, K. Sato, K. Ouhara, and T. Kawai, “Hydrogen mediates suppression of colon inflammation induced by dextran sodium sulfate,” Biochemical and Biophysical Research Communications, vol. 386, no. 1, pp. 11–15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. Sato, S. Kajiyama, A. Amano et al., “Hydrogen-rich pure water prevents superoxide formation in brain slices of vitamin C-depleted SMP30/GNL knockout mice,” Biochemical and Biophysical Research Communications, vol. 375, no. 3, pp. 346–350, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. R. J. Dinis-Oliveira, C. Sousa, F. Remião et al., “Sodium salicylate prevents paraquat-induced apoptosis in the rat lung,” Free Radical Biology and Medicine, vol. 43, no. 1, pp. 48–61, 1975.