About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 310791, 8 pages
http://dx.doi.org/10.1155/2011/310791
Research Article

Titin-Actin Interaction: PEVK-Actin-Based Viscosity in a Large Animal

1Molecular Cardiovascular Research Program, Sarver Heart Center, Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
2Department of Integrative Pathophysiology, Universitätsmedizin Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany

Received 23 July 2011; Accepted 1 September 2011

Academic Editor: Guy Benian

Copyright © 2011 Charles S. Chung et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Ohno, C. P. Cheng, and W. C. Little, “Mechanism of altered patterns of left ventricular filling during the development of congestive heart failure,” Circulation, vol. 89, no. 5, pp. 2241–2250, 1994. View at Scopus
  2. L. Shmuylovich and S. J. Kovács, “E-wave deceleration time may not provide an accurate determination of LV chamber stiffness if LV relaxation/viscoelasticity is unknown,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 292, no. 6, pp. H2712–H2720, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. R. Zile and D. L. Brutsaert, “New concepts in diastolic dysfunction and diastolic heart failure: part I: diagnosis, prognosis, and measurements of diastolic function,” Circulation, vol. 105, no. 11, pp. 1387–1393, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. C. S. Chung and H. L. Granzier, “Contribution of titin and extracellular matrix to passive pressure and measurement of sarcomere length in the mouse left ventricle,” Journal of Molecular and Cellular Cardiology, vol. 50, no. 4, pp. 731–739, 2011. View at Publisher · View at Google Scholar
  5. C. S. Chung and S. J. Kovács, “Physical determinants of left ventricular isovolumic pressure decline: model prediction with in vivo validation,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 294, no. 4, pp. H1589–H1596, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. D. A. Kass, J. G. F. Bronzwaer, and W. J. Paulus, “What mechanisms underlie diastolic dysfunction in heart failure?” Circulation Research, vol. 94, no. 12, pp. 1533–1542, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. J. Kovács, B. Barzilai, and J. E. Pérez, “Evaluation of diastolic function with Doppler echocardiography: the PDF formalism,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 252, no. 1, part 2, pp. H178–H187, 1987. View at Scopus
  8. K. Wang, J. McClure, and A. Tu, “Titin: major myofibrillar components of striated muscle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 8, pp. 3698–3702, 1979. View at Scopus
  9. K. Maruyama, “Connectin, an elastic protein from myofibrils,” Journal of Biochemistry, vol. 80, no. 2, pp. 405–407, 1976. View at Scopus
  10. M. M. Lewinter and H. Granzier, “Cardiac titin: a multifunctional giant,” Circulation, vol. 121, no. 19, pp. 2137–2145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. W. A. Linke and M. Krüger, “The giant protein titin as an integrator of myocyte signaling pathways,” Physiology, vol. 25, no. 3, pp. 186–198, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. H. L. Granzier and S. Labeit, “The giant protein titin: a major player in myocardial mechanics, signaling, and disease,” Circulation Research, vol. 94, no. 3, pp. 284–295, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Yamasaki, M. Berri, Y. Wu et al., “Titin-actin interaction in mouse myocardium: passive tension modulation and its regulation by calcium/S100A1,” Biophysical Journal, vol. 81, no. 4, pp. 2297–2313, 2001. View at Scopus
  14. H. P. Erickson, “Reversible unfolding of fibronectin type III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 21, pp. 10114–20118, 1994. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Tskhovrebova, J. Trinick, J. A. Sleep, and R. M. Simmons, “Elasticity and unfolding of single molecules of the giant muscle protein titin,” Nature, vol. 387, no. 6630, pp. 308–312, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Rief, M. Gautel, A. Schemmel, and H. E. Gaub, “The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy,” Biophysical Journal, vol. 75, no. 6, pp. 3008–3014, 1998. View at Scopus
  17. M. Gautel, E. Lehtonen, and F. Pietruschka, “Assembly of the cardiac I-band region of titin/connectin: expression of the cardiac-specific regions and their structural relation to the elastic segments,” Journal of Muscle Research and Cell Motility, vol. 17, no. 4, pp. 449–461, 1996. View at Scopus
  18. K. Trombitás, M. Greaser, S. Labeit et al., “Titin extensibility in situ: entropic elasticity of permanently folded and permanently unfolded molecular segments,” Journal of Cell Biology, vol. 140, no. 4, pp. 853–859, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Trombitás, Y. Wu, M. McNabb et al., “Molecular basis of passive stress relaxation in human soleus fibers: assessment of the role of immunoglobulin-like domain unfolding,” Biophysical Journal, vol. 85, no. 5, pp. 3142–3153, 2003. View at Scopus
  20. M. Helmes, K. Trombitás, T. Centner et al., “Mechanically driven contour-length adjustment in rat cardiac titin's unique N2B sequence: titin is an adjustable spring,” Circulation Research, vol. 84, no. 11, pp. 1339–1352, 1999. View at Scopus
  21. H. Granzier, M. Kellermayer, M. Helmes, and K. Trombitás, “Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin-filament extraction,” Biophysical Journal, vol. 73, no. 4, pp. 2043–2053, 1997. View at Scopus
  22. T. Funatsu, E. Kono, H. Higuchi et al., “Elastic filaments in situ in cardiac muscle: deep-etch replica analysis in combination with selective removal of actin and myosin filaments,” Journal of Cell Biology, vol. 120, no. 3, pp. 711–724, 1993. View at Publisher · View at Google Scholar · View at Scopus
  23. M. S. Kellermayer and H. L. Granzier, “Calcium-dependent inhibition of in vitro thin-filament motility by native titin,” FEBS Letters, vol. 380, no. 3, pp. 281–286, 1996. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Kimura, K. Maruyama, and Y. P. Huang, “Interactions of muscle β-connectin with myosin, actin, and actomyosin at low ionic strengths,” Journal of Biochemistry, vol. 96, no. 2, pp. 499–506, 1984. View at Scopus
  25. A. Soteriou, M. Gamage, and J. Trinick, “A survey of interactions made by the giant protein titin,” Journal of Cell Science, vol. 104, no. 1, part 1, pp. 119–123, 1993. View at Scopus
  26. M. Kulke, S. Fujita-Becker, E. Rostkova et al., “Interaction betweeen PEVK-titin and actin filaments origin of a viscous force component in cardiac myofibrils,” Circulation Research, vol. 89, no. 10, pp. 874–881, 2001. View at Scopus
  27. W. A. Linke, M. Ivemeyer, S. Labeit, H. Hinssen, J. C. Rüegg, and M. Gautel, “Actin-titin interaction in cardiac myofibrils: probing a physiological role,” Biophysical Journal, vol. 73, no. 2, pp. 905–919, 1997. View at Scopus
  28. H. L. Granzier, M. H. Radke, J. Peng et al., “Truncation of titin's elastic PEVK region leads to cardiomyopathy with diastolic dysfunction,” Circulation Research, vol. 105, no. 6, pp. 557–564, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. C. S. Chung, M. Methawasin, O. L. Nelson et al., “Titin based viscosity in ventricular physiology: an integrative investigation of PEVK-actin interactions,” Journal of Molecular and Cellular Cardiology, vol. 51, no. 3, pp. 428–434, 2011. View at Publisher · View at Google Scholar
  30. M. Greaser, “Identification of new repeating motifs in titin,” Proteins, vol. 43, no. 2, pp. 145–149, 2001.
  31. A. Nagy, P. Cacciafesta, L. Grama, A. Kengyel, A. Málnási-Csizmadia, and M. S. Kellermayer, “Differential actin binding along the PEVK domain of skeletal muscle titin,” Journal of Cell Science, vol. 117, part 24, pp. 5781–5789, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Hidalgo, B. Hudson, J. Bogomolovas et al., “PKC phosphorylation of titin's PEVK element: a novel and conserved pathway for modulating myocardial stiffness,” Circulation Research, vol. 105, no. 7, pp. 631–638, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. P. P. de Tombe and H. E. ter Keurs, “An internal viscous element limits unloaded velocity of sarcomere shortening in rat myocardium,” Journal of Physiology, vol. 454, pp. 619–642, 1992. View at Scopus
  34. T. S. Harris, C. F. Baicu, C. H. Conrad et al., “Constitutive properties of hypertrophied myocardium: cellular contribution to changes in myocardial stiffness,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 282, no. 6, pp. H2173–H2182, 2002. View at Scopus
  35. H. L. Granzier and K. Wang, “Interplay between passive tension and strong and weak binding cross-bridges in insect indirect flight muscle: a functional dissection by gelsolin-mediated thin filament removal,” Journal of General Physiology, vol. 101, no. 2, pp. 235–270, 1993. View at Scopus
  36. H. Fukushima, C. S. Chung, and H. Granzier, “Titin-isoform dependence of titin-actin interaction and its regulation by S100A1/ Ca2+ in skinned myocardium,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 727239, 9 pages, 2010. View at Publisher · View at Google Scholar
  37. W. A. Linke, M. Kulke, H. Li et al., “PEVK domain of titin: an entropic spring with actin-binding properties,” Journal of Structural Biology, vol. 137, no. 1-2, pp. 194–205, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. M. M. Lewinter, J. Popper, M. McNabb, L. Nyland, S. B. Bell, and H. Granzier, “Extensible behavior of titin in the miniswine left ventricle,” Circulation, vol. 121, no. 6, pp. 768–774, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. S. F. Nagueh, C. P. Appleton, T. C. Gillebert et al., “Recommendations for the evaluation of left ventricular diastolic function by echocardiography,” Journal of the American Society of Echocardiography, vol. 22, no. 2, pp. 107–133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Shmuylovich, C. S. Chung, and S. J. Kovács, “Point: left ventricular volume during diastasis is the physiological in vivo equilibrium volume and is related to diastolic suction,” Journal of Applied Physiology, vol. 109, no. 2, pp. 606–608, 2010. View at Scopus
  41. J. D. Stroud, C. F. Baicu, M. A. Barnes, F. G. Spinale, and M. R. Zile, “Viscoelastic properties of pressure overload hypertrophied myocardium: effect of serine protease treatment,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 282, no. 6, pp. H2324–H2335, 2002. View at Scopus
  42. S. Nishimura, S. Nagai, M. Katoh et al., “Microtubules modulate the stiffness of cardiomyocytes against shear stress,” Circulation Research, vol. 98, no. 1, pp. 81–87, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Vlkers, D. Rohde, C. Goodman, and P. Most, “S100A1: a regulator of striated muscle sarcoplasmic reticulum Ca2+ handling, sarcomeric, and mitochondrial function,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 178614, 10 pages, 2010. View at Publisher · View at Google Scholar
  44. B. D. Hudson, C. G. Hidalgo, M. Gotthardt, and H. L. Granzier, “Excision of titin's cardiac PEVK spring element abolishes PKCα-induced increases in myocardial stiffness,” Journal of Molecular and Cellular Cardiology, vol. 48, no. 5, pp. 972–978, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. E. Churchill, G. Budas, A. Vallentin, T. Koyanagi, and D. Mochly-Rosen, “PKC isozymes in chronic cardiac disease: possible therapeutic targets?” Annual Review of Pharmacology and Toxicology, vol. 48, pp. 569–599, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. S. S. Palaniyandi, L. Sun, J. C. Ferreira, and D. Mochly-Rosen, “Protein kinase C in heart failure: a therapeutic target?” Cardiovascular Research, vol. 82, no. 2, pp. 229–239, 2009. View at Publisher · View at Google Scholar · View at Scopus