About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 342637, 23 pages
http://dx.doi.org/10.1155/2011/342637
Research Article

Animal Models of Colitis-Associated Carcinogenesis

1Gastrointestinal Unit, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, GRJ 702, 55 Fruit Street, Boston, MA 02114, USA
2Department of Pathology, Harvard Medical School, Massachusetts General Hospital, GRJ 702, 55 Fruit Street, Boston, MA 02114, USA
3Center for the Study of Inflammatory Bowel Disease, Harvard Medical School, Massachusetts General Hospital, GRJ 702, 55 Fruit Street, Boston, MA 02114, USA

Received 27 September 2010; Revised 8 December 2010; Accepted 10 December 2010

Academic Editor: Andrea Vecchione

Copyright © 2011 Manasa Kanneganti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Crohn and H. Rosenberg, “The sigmoidoscopic picture of chronic ulcerative colitis (non-specific),” American Journal of the Medical Sciences, vol. 170, pp. 220–228, 1925.
  2. J. A. Eaden, K. R. Abrams, and J. F. Mayberry, “The risk of colorectal cancer in ulcerative colitis: a meta-analysis,” Gut, vol. 48, no. 4, pp. 526–535, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Kornfeld, A. Ekbom, and T. Ihre, “Is there an excess risk for colorectal cancer in patients with ulcerative colitis and concomitant primary sclerosing cholangitis? A population based study,” Gut, vol. 41, no. 4, pp. 522–525, 1997.
  4. A. Vera, B. K. Gunson, V. Ussatoff et al., “Colorectal cancer in patients with inflammatory bowel disease after liver transplantation for primary sclerosing cholangitis,” Transplantation, vol. 75, no. 12, pp. 1983–1988, 2003. View at Scopus
  5. L. Lakatos, G. Mester, Z. Erdelyi et al., “Risk factors for ulcerative colitis-associated colorectal cancer in a Hungarian cohort of patients with ulcerative colitis: results of a population-based study,” Inflammatory Bowel Diseases, vol. 12, no. 3, pp. 205–211, 2006. View at Publisher · View at Google Scholar
  6. R. F. Willenbucher, S. J. Zelman, L. D. Ferrell, D. H. Moore 2nd, and F. M. Waldman, “Chromosomal alterations in ulcerative colitis-related neoplastic progression,” Gastroenterology, vol. 113, no. 3, pp. 791–801, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Byers, B. Levin, D. Rothenberger, G. D. Dodd, and R. A. Smith, “American Cancer Society guidelines for screening and surveillance for early detection of colorectal polyps and cancer: update 1997,” Ca-A Cancer Journal for Clinicians, vol. 47, no. 3, pp. 154–160, 1997.
  8. M. N. Kulaylat and M. T. Dayton, “Ulcerative colitis and cancer,” Journal of Surgical Oncology, vol. 101, no. 8, pp. 706–712, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. D. K. Podolsky, “Mucosal immunity and inflammation V. Innate mechanisms of mucosal defense and repair: the best offense is a good defense,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 277, no. 3, pp. G495–G499, 1999. View at Scopus
  10. L. V. Hooper, M. H. Wong, A. Thelin, L. Hansson, P. G. Falk, and J. I. Gordon, “Molecular analysis of commensal host-microbial relationships in the intestine,” Science, vol. 291, no. 5505, pp. 881–884, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. C. L. Wilson, A. J. Ouellette, D. P. Satchell et al., “Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense,” Science, vol. 286, no. 5437, pp. 113–117, 1999. View at Publisher · View at Google Scholar
  12. L. M. Higgins, G. Frankel, I. Connerton, N. S. Gonçalves, G. Dougan, and T. T. MacDonald, “Role of bacterial intimin in colonic hyperplasia and inflammation,” Science, vol. 285, no. 5427, pp. 588–591, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. W. E. W. Roediger and W. Babidge, “Human colonocyte detoxification,” Gut, vol. 41, no. 6, pp. 731–734, 1997. View at Scopus
  14. E. Mizoguchi, R. J. Xavier, H. C. Reinecker et al., “Colonic epithelial functional phenotype varies with type and phase of experimental colitis,” Gastroenterology, vol. 125, no. 1, pp. 148–161, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. M. D. Levitt, J. Furne, J. Springfield, F. Suarez, and E. DeMaster, “Detoxification of hydrogen sulfide and methanethiol in the cecal mucosa,” Journal of Clinical Investigation, vol. 104, no. 8, pp. 1107–1114, 1999. View at Scopus
  16. E. Mizoguchi, A. Mizoguchi, H. Takedatsu et al., “Role of tumor necrosis factor receptor 2 (TNFR2) in colonic epithelial hyperplasia and chronic intestinal inflammation in mice,” Gastroenterology, vol. 122, no. 1, pp. 134–144, 2002. View at Scopus
  17. E. Cario, I. M. Rosenberg, S. L. Brandwein, P. L. Beck, H. C. Reinecker, and D. K. Podolsky, “Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors,” Journal of Immunology, vol. 164, no. 2, pp. 966–972, 2000. View at Scopus
  18. S. Danese and A. Mantovani, “Inflammatory bowel disease and intestinal cancer: a paradigm of the Yin-Yang interplay between inflammation and cancer,” Oncogene, vol. 29, no. 23, pp. 3313–3323, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Szlosarek, K. A. Charles, and F. R. Balkwill, “Tumour necrosis factor-α as a tumour promoter,” European Journal of Cancer, vol. 42, no. 6, pp. 745–750, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. S. A. Jones, “Directing transition from innate to acquired immunity: defining a role for IL-6,” Journal of Immunology, vol. 175, no. 6, pp. 3463–3468, 2005. View at Scopus
  21. F. R. Greten, L. Eckmann, T. F. Greten et al., “IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer,” Cell, vol. 118, no. 3, pp. 285–296, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. H. C. Reinecker, E. Y. Loh, D. J. Ringler, A. Mehta, J. L. Rombeau, and R. P. MacDermott, “Monocyte-chemoattractant protein 1 gene expression in intestinal epithelial cells and inflammatory bowel disease mucosa,” Gastroenterology, vol. 108, no. 1, pp. 40–50, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Mazzucchelli, C. Hauser, K. Zgraggen et al., “Differential in situ expression of the genes encoding the chemokines MCP-1 and RANTES in human inflammatory bowel disease,” Journal of Pathology, vol. 178, no. 2, pp. 201–206, 1996. View at Publisher · View at Google Scholar · View at Scopus
  24. B. K. Popivanova, K. Kitamura, Y. Wu et al., “Blocking TNF-α in mice reduces colorectal carcinogenesis associated with chronic colitis,” Journal of Clinical Investigation, vol. 118, no. 2, pp. 560–570, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Eurich, M. Segawa, S. Toei-Shimizu, and E. Mizoguchi, “Potential role of Chitinase 3-like-1 in inflammation-associated carcinogenic changes of epithelial cells,” World Journal of Gastroenterology, vol. 15, no. 42, pp. 5249–5259, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Segawa, J. Zhang, K. Eurich, et al., “M1936 Chitinase 3-like-1 enhances inflammation-associated tumorigenesis by activating the β-catenin/Wnt signaling pathway of CECs,” Gastroenterology, vol. 138, no. 5, Supplement 1, p. S-443, 2010.
  27. C. R. Boland, S. N. Thibodeau, S. R. Hamilton et al., “A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer,” Cancer Research, vol. 58, no. 22, pp. 5248–5257, 1998.
  28. S. H. Itzkowitz and X. Yio, “Inflammation and cancer—IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 287, no. 1, pp. G7–G17, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Goel, C. N. Arnold, D. Niedzwiecki et al., “Characterization of sporadic colon cancer by patterns of genomic instability,” Cancer Research, vol. 63, no. 7, pp. 1608–1614, 2003. View at Scopus
  30. A. Rowan, S. Halford, M. Gaasenbeek et al., “Refining molecular analysis in the pathways of colorectal carcinogenesis,” Clinical Gastroenterology and Hepatology, vol. 3, no. 11, pp. 1115–1123, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. J. C. Weber, N. Meyer, E. Pencreach et al., “Allelotyping analyses of synchronous primary and metastasis CIN colon cancers identified different subtypes,” International Journal of Cancer, vol. 120, no. 3, pp. 524–532, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Boveri, Zur Frage der Entstehung Maligner Tumoren, Gustav Fischer, Jena, Germany, 1914.
  33. F. Herzog, I. Primorac, P. Dube et al., “Structure of the anaphase-promoting complex/cyclosome interacting with a mitotic checkpoint complex,” Science, vol. 323, no. 5920, pp. 1477–1481, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. D. P. Cahill, C. Lengauer, J. Yu et al., “Mutations of mitotic checkpoint genes in human cancers,” Nature, vol. 392, no. 6673, pp. 300–303, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. Z. Wang, J. M. Cummins, D. Shen et al., “Three classes of genes mutated in colorectal cancers with chromosomal instability,” Cancer Research, vol. 64, no. 9, pp. 2998–3001, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. N. J. Ganem, S. A. Godinho, and D. Pellman, “A mechanism linking extra centrosomes to chromosomal instability,” Nature, vol. 460, no. 7252, pp. 278–282, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Katayama, T. Ota, F. Jisaki et al., “Mitotic kinase expression and colorectal cancer progression,” Journal of the National Cancer Institute, vol. 91, no. 13, pp. 1160–1162, 1999. View at Scopus
  38. L. Macůrek, A. Lindqvist, D. Lim et al., “Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery,” Nature, vol. 455, no. 7209, pp. 119–123, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Takahashi, B. Sano, T. Nagata et al., “Polo-like kinase 1 (PLK1) is overexpressed in primary colorectal cancers,” Cancer Science, vol. 94, no. 2, pp. 148–152, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Chen, P. S. Rabinovitch, D. A. Crispin, M. J. Emond, M. P. Bronner, and T. A. Brentnall, “The initiation of colon cancer in a chronic inflammatory setting,” Carcinogenesis, vol. 26, no. 9, pp. 1513–1519, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. K. J. Sohn, S. A. Shah, S. Reid et al., “Molecular genetics of ulcerative colitis-associated colon cancer in the interleukin 2- and β-microgiobulin-deficient mouse,” Cancer Research, vol. 61, no. 18, pp. 6912–6917, 2001. View at Scopus
  42. R. L. Shattuck-Brandt, G. W. Varilek, A. Radhika, F. Yang, M. K. Washington, and R. N. DuBois, “Cyclooxygenase 2 expression is increased in the stroma of colon carcinomas from IL-10(-/-) mice,” Gastroenterology, vol. 118, no. 2, pp. 337–345, 2000. View at Scopus
  43. S. E. Erdman, T. Poutahidis, M. Tomczak et al., “CD4+ CD25+ regulatory T lymphocytes inhibit microbially induced colon cancer in Rag2-deficient mice,” American Journal of Pathology, vol. 162, no. 2, pp. 691–702, 2003. View at Scopus
  44. S. Kado, K. Uchida, H. Funabashi et al., “Intestinal microflora are necessary for development of spontaneous adenocarcinoma of the large intestine in T-cell receptor β chain and p53 double-knockout mice,” Cancer Research, vol. 61, no. 6, pp. 2395–2398, 2001. View at Scopus
  45. F. F. Chu, R. S. Esworthy, P. G. Chu et al., “Bacteria-induced intestinal cancer in mice with disrupted Gpx1 and Gpx2 genes,” Cancer Research, vol. 64, no. 3, pp. 962–968, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. U. Rudolph, M. J. Finegold, S. S. Rich et al., “Ulcerative colitis and adenocarcinoma of the colon in Gα(i2)-deficient mice,” Nature Genetics, vol. 10, no. 2, pp. 143–150, 1995. View at Publisher · View at Google Scholar · View at Scopus
  47. A. H. Reitmair, M. Redston, J. C. Cai et al., “Spontaneous intestinal carcinomas and skin neoplasms in Msh2-deficient mice,” Cancer Research, vol. 56, no. 16, pp. 3842–3849, 1996. View at Scopus
  48. W. Edelmann, A. Umar, K. Yang et al., “The DNA mismatch repair genes Msh3 and Msh6 cooperate in intestinal tumor suppression,” Cancer Research, vol. 60, no. 4, pp. 803–807, 2000. View at Scopus
  49. W. Edelmann, K. Yang, M. Kuraguchi et al., “Tumorigenesis in Mlh1 and Mlh1/Apc1638N mutant mice,” Cancer Research, vol. 59, no. 6, pp. 1301–1307, 1999. View at Scopus
  50. P.-C. Chen, S. Dudley, W. Hagen et al., “Contributions by MutL homologues Mlh3 and Pms2 to DNA mismatch repair and tumor suppression in the mouse,” Cancer Research, vol. 65, no. 19, pp. 8662–8670, 2005. View at Publisher · View at Google Scholar
  51. D. P. Lin, Y. Wang, S. J. Scherer et al., “An Msh2 point mutation uncouples DNA mismatch repair and apoptosis,” Cancer Research, vol. 64, no. 2, pp. 517–522, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Avdievich, C. Reiss, S. J. Scherer et al., “Distinct effects of the recurrent Mlh1 mutation on MMR functions, cancer, and meiosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 11, pp. 4247–4252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. A. R. Moser, C. Luongo, K. A. Gould, M. K. McNeley, A. R. Shoemaker, and W. F. Dove, “ApcMin: a mouse model for intestinal and mammary tumorigenesis,” European Journal of Cancer, vol. 31, no. 7-8, pp. 1061–1064, 1995. View at Scopus
  54. E. Half, D. Bercovich, and P. Rozen, “Familial adenomatous polyposis,” Orphanet Journal of Rare Diseases, vol. 4, no. 1, article 22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. A. E. McCart, N. K. Vickaryous, and A. Silver, “Apc mice: models, modifiers and mutants,” Pathology Research and Practice, vol. 204, no. 7, pp. 479–490, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. S. R. Ritland and S. J. Gendler, “Chemoprevention of intestinal adenomas in the ApcMin mouse by piroxicam: kinetics, strain effects and resistance to chemosuppression,” Carcinogenesis, vol. 20, no. 1, pp. 51–58, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. R. Fodde and R. Smits, “Disease model: familial adenomatous polyposis,” Trends in Molecular Medicine, vol. 7, no. 8, pp. 369–373, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. A. R. Moser, L. F. Hegge, and R. D. Cardiff, “Genetic background affects susceptibility to mammary hyperplasias and carcinomas in ApcMin/+ mice,” Cancer Research, vol. 61, no. 8, pp. 3480–3485, 2001. View at Scopus
  59. A. R. Moser, A. R. Shoemaker, C. S. Connelly et al., “Homozygosity for the Min allele of Apc results in disruption of mouse development prior to gastrulation,” Developmental Dynamics, vol. 203, no. 4, pp. 422–433, 1995. View at Scopus
  60. P. Alberici and R. Fodde, “The role of the APC tumor suppressor in chromosomal instability,” in Genome and Disease, J. N. Volff, Ed., vol. 1 of Genome Dynamics, pp. 149–170, Karger, Basel, Switzerland, 2006.
  61. D. J. Berg, N. Davidson, R. Kühn et al., “Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4+ Th1-like responses,” Journal of Clinical Investigation, vol. 98, no. 4, pp. 1010–1020, 1996. View at Scopus
  62. S. Sturlan, G. Oberhuber, B. G. Beinhauer et al., “Interleukin-10-deficient mice and inflammatory bowel disease associated cancer development,” Carcinogenesis, vol. 22, no. 4, pp. 665–671, 2001. View at Scopus
  63. S. Kraus and N. Arber, “Inflammation and colorectal cancer,” Current Opinion in Pharmacology, vol. 9, no. 4, pp. 405–410, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. P. L. Beatty, S. E. Plevy, A. R. Sepulveda, and O. J. Finn, “Cutting edge: transgenic expression of human MUC1 in IL-10 mice accelerates inflammatory bowel disease and progression to colon cancer,” Journal of Immunology, vol. 179, no. 2, pp. 735–739, 2007. View at Scopus
  65. D. M. Rennick and M. M. Fort, “Lessons from genetically engineered animal models. XII. IL-10-deficient (IL-10(-/-) mice and intestinal inflammation,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 278, no. 6, pp. G829–G833, 2000. View at Scopus
  66. M. Chichlowski, J. M. Sharp, D. A. Vanderford, M. H. Myles, and L. P. Hale, “Helicobacter typhlonius and Helicobacter rodentium differentially affect the severity of colon inflammation and inflammation-associated neoplasia in IL10-deficient mice,” Comparative Medicine, vol. 58, no. 6, pp. 534–541, 2008. View at Scopus
  67. R. Glauben, A. Batra, T. Stroh et al., “Histone deacetylases: novel targets for prevention of colitis-associated cancer in mice,” Gut, vol. 57, no. 5, pp. 613–622, 2008. View at Publisher · View at Google Scholar
  68. C. M. Nagamine, A. B. Rogers, J. G. Fox, and D. B. Schauer, “Helicobacter hepaticus promotes azoxymethane-initiated colon tumorigenesis in BALB/c-IL10-deficient mice,” International Journal of Cancer, vol. 122, no. 4, pp. 832–838, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. S. R. Neves, P. T. Ram, and R. Iyengar, “G protein pathways,” Science, vol. 296, no. 5573, pp. 1636–1639, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. U. Rudolphs, M. J. Finegold, S. S. Rich et al., “G(i2)α protein deficiency: a model for inflammatory bowel disease,” Journal of Clinical Immunology, vol. 15, no. 6, pp. 101S–105S, 1995.
  71. F. H. Gordon, C. W. Y. Lai, M. I. Hamilton et al., “A randomized placebo-controlled trial of a humanized monoclonal antibody to α4 integrin in active Crohn's disease,” Gastroenterology, vol. 121, no. 2, pp. 268–274, 2001. View at Scopus
  72. F. H. Gordon, M. I. Hamilton, S. Donoghue et al., “A pilot study of treatment of active ulcerative colitis with natalizumab, a humanized monoclonal antibody to alpha-4 integrin,” Alimentary Pharmacology and Therapeutics, vol. 16, no. 4, pp. 699–705, 2002. View at Publisher · View at Google Scholar · View at Scopus
  73. P. E. Hesterberg, D. Winsor-Hines, M. J. Briskin, et al., “Rapid resolution of chronic colitis in the cotton-top tamarin with an antibody to a gut-homing integrin alpha 4 beta,” Gastroenterology, vol. 121, pp. 268–274, 2001.
  74. D. K. Podolsky, R. Lobb, N. King et al., “Attenuation of colitis in the cotton-top tamarin by anti-α4 integrin monoclonal antibody,” Journal of Clinical Investigation, vol. 92, no. 1, pp. 372–380, 1993. View at Scopus
  75. M. Bjursten, P. W. Bland, R. Willén, and E. H. Hörnquist, “Long-term treatment with anti-α4 integrin antibodies aggravates colitis in Gαi2-deficient mice,” European Journal of Immunology, vol. 35, no. 8, pp. 2274–2283, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. N. K. Clapp, M. L. Henke, C. C. Lushbaugh, G. L. Humason, and B. L. Gangaware, “Effect of various biological factors on spontaneous marmoset and tamarin colitis. A retrospective histopathologic study,” Digestive Diseases and Sciences, vol. 33, no. 8, pp. 1013–1019, 1988. View at Scopus
  77. K. E. Saunders, Z. Shen, F. E. Dewhirst, B. J. Paster, C. A. Dangler, and J. G. Fox, “Novel intestinal Helicobacter species isolated from cotton-top tamarins (Saguinus oedipus) with chronic colitis,” Journal of Clinical Microbiology, vol. 37, no. 1, pp. 146–151, 1999. View at Scopus
  78. E. R. Bertone, E. L. Giovannucci, N. W. King, A. J. Petto, and L. D. Johnson, “Family history as a risk factor for ulcerative colitis-associated colon cancer in cotton-top tamarin,” Gastroenterology, vol. 114, no. 4 I, pp. 669–674, 1998. View at Publisher · View at Google Scholar · View at Scopus
  79. J. D. Wood, O. C. Peck, K. S. Tefend et al., “Colitis and colon cancer in cotton-top tamarins (Saguinus oedipus oedipus) living wild in their natural habitat,” Digestive Diseases and Sciences, vol. 43, no. 7, pp. 1443–1453, 1998. View at Publisher · View at Google Scholar · View at Scopus
  80. K. G. Mansfield, K. C. Lin, D. Xia et al., “Enteropathogenic Escherichia coli and ulcerative colitis in cotton-top tamarins (Saguinus oedipus),” Journal of Infectious Diseases, vol. 184, no. 6, pp. 803–807, 2001. View at Publisher · View at Google Scholar · View at Scopus
  81. P. E. Watkins, B. F. Warren, S. Stephens, P. Ward, and R. Foulkes, “Treatment of ulcerative colitis in the cottontop tamarin using antibody to tumour necrosis factor alpha,” Gut, vol. 40, no. 5, pp. 628–633, 1997. View at Scopus
  82. S. B. Hanauer, B. G. Feagan, G. R. Lichtenstein et al., “Maintenance infliximab for Crohn's disease: the ACCENT I randomised trial,” Lancet, vol. 359, no. 9317, pp. 1541–1549, 2002. View at Publisher · View at Google Scholar · View at Scopus
  83. P. Rutgeerts, R. H. Diamond, M. Bala et al., “Scheduled maintenance treatment with infliximab is superior to episodic treatment for the healing of mucosal ulceration associated with Crohn's disease,” Gastrointestinal Endoscopy, vol. 63, no. 3, pp. 433–442, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. B. E. Sands, F. H. Anderson, C. N. Bernstein et al., “Infliximab maintenance therapy for fistulizing Crohn's disease,” New England Journal of Medicine, vol. 350, no. 9, pp. 876–885, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Ghosh, E. Goldin, F. H. Gordon et al., “Natalizumab for active Crohn's disease,” New England Journal of Medicine, vol. 348, no. 1, pp. 24–32, 2003. View at Publisher · View at Google Scholar
  86. W. J. Sandborn, J. F. Colombel, R. Enns et al., “Natalizumab induction and maintenance therapy for Crohn's disease,” New England Journal of Medicine, vol. 353, no. 18, pp. 1912–1925, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. G. van Assche, M. van Ranst, R. Sciot et al., “Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn's disease,” New England Journal of Medicine, vol. 353, no. 4, pp. 362–368, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. D. K. Podolsky, “Selective adhesion-molecule therapy and inflammatory bowel disease—a tale of Janus?” New England Journal of Medicine, vol. 353, no. 18, pp. 1965–1968, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. K. W. Ashi, T. Inagaki, Y. Fujimoto, and Y. Fukuda, “Induction by degraded carrageenan of colorectal tumors in rats,” Cancer Letters, vol. 4, no. 3, pp. 171–176, 1978. View at Scopus
  90. Y. Oohashi, T. Ishioka, K. Wakabayashi, and N. Kuwabara, “A study on carcinogenesis induced by degraded carrageenan arising from squamous metaplasia of the rat colorectum,” Cancer Letters, vol. 14, no. 3, pp. 267–272, 1981. View at Scopus
  91. T. Ishioka, N. Kuwabara, Y. Oohashi, and K. Wakabayashi, “Induction of colorectal tumors in rats by sulfated polysaccharides,” Critical Reviews in Toxicology, vol. 17, no. 3, pp. 215–244, 1987. View at Scopus
  92. J. K. Tobacman, “Review of harmful gastrointestinal effects of carrageenan in animal experiments,” Environmental Health Perspectives, vol. 109, no. 10, pp. 983–994, 2001.
  93. C. Benard, A. Cultrone, C. Michel et al., “Degraded carrageenan causing colitis in rats induces TNF secretion and ICAM-1 upregulation in monocytes through NF-κB activation,” PLoS ONE, vol. 5, no. 1, article e8666, 2010. View at Publisher · View at Google Scholar
  94. A. M. Chromik, A. M. Müller, M. Albrecht et al., “Oral administration of Taurolidine ameliorates chronic DSS colitis in mice,” Journal of Investigative Surgery, vol. 20, no. 5, pp. 273–282, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. Y. J. Kim, K. S. Hong, J. W. Chung, J. H. Kim, and K. B. Hahm, “Prevention of colitis-associated carcinogenesis with infliximab,” Cancer Prevention Research, vol. 3, no. 10, pp. 1314–1333, 2010. View at Publisher · View at Google Scholar
  96. D. N. Seril, J. Liao, K. L. K. Ho, A. Warsi, C. S. Yang, and G. Y. Yang, “Dietary iron supplementation enhances DSS-induced colitis and associated colorectal carcinoma development in mice,” Digestive Diseases and Sciences, vol. 47, no. 6, pp. 1266–1278, 2002. View at Publisher · View at Google Scholar · View at Scopus
  97. I. Okayasu, M. Yamada, T. Mikami, T. Yoshida, J. Kanno, and T. Ohkusa, “Dysplasia and carcinoma development in a repeated dextran sulfate sodium-induced colitis model,” Journal of Gastroenterology and Hepatology, vol. 17, no. 10, pp. 1078–1083, 2002. View at Publisher · View at Google Scholar · View at Scopus
  98. H. S. Cooper, L. Everley, W. Chang et al., “The role of mutant Apc in the development of dysplasia and cancer in the mouse model of dextran sulfate sodium-induced colitis,” Gastroenterology, vol. 121, no. 6, pp. 1407–1416, 2001. View at Scopus
  99. F. Kullmann, H. Messmann, M. Alt et al., “Clinical and histopathological features of dextran sulfate sodium induced acute and chronic colitis associated with dysplasia in rats,” International Journal of Colorectal Disease, vol. 16, no. 4, pp. 238–246, 2001. View at Publisher · View at Google Scholar · View at Scopus
  100. H. S. Cooper, S. Murthy, K. Kido, H. Yoshitake, and A. Flanigan, “Dysplasia and cancer in the dextran sulfate sodium mouse colitis model. Relevance to colitis-associated neoplasia in the human: a study of histopathology, B-catenin and p53 expression and the role of inflammation,” Carcinogenesis, vol. 21, no. 4, pp. 757–768, 2000. View at Scopus
  101. T. Tanaka, H. Kohno, R. Suzuki, Y. Yamada, S. Sugie, and H. Mori, “A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate,” Cancer Science, vol. 94, no. 11, pp. 965–973, 2003. View at Publisher · View at Google Scholar · View at Scopus
  102. D. W. Rosenberg, C. Giardina, and T. Tanaka, “Mouse models for the study of colon carcinogenesis,” Carcinogenesis, vol. 30, no. 2, pp. 183–196, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. T. Tanaka and R. Yasui, “Preclinical animal studies on chemoprevention of colorectal cancer,” Clinical Gastroenterology, vol. 23, pp. 1669–1676, 2008.
  104. H. Kohno, R. Suzuki, S. Sugie, and T. Tanaka, “β-Catenin mutations in a mouse model of inflammation-related colon carcinogenesis induced by 1,2-dimethylhydrazine and dextran sodium sulfate,” Cancer Science, vol. 96, no. 2, pp. 69–76, 2005. View at Publisher · View at Google Scholar
  105. T. Tanaka, R. Suzuki, H. Kohno, S. Sugie, M. Takahashi, and K. Wakabayashi, “Colonic adenocarcinomas rapidly induced by the combined treatment with 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and dextran sodium sulfate in male ICR mice possess β-catenin gene mutations and increases immunoreactivity for β-catenin, cyclooxygenase-2 and inducible nitric oxide synthase,” Carcinogenesis, vol. 26, no. 1, pp. 229–238, 2005. View at Publisher · View at Google Scholar
  106. D. N. Seril, J. Liao, K. L. K. Ho, C. S. Yang, and G. Y. Yang, “Inhibition of chronic ulcerative colitis-associated colorectal adenocarcinoma development in a murine model by N-acetylcysteine,” Carcinogenesis, vol. 23, no. 6, pp. 993–1001, 2002. View at Scopus
  107. D. N. Seril, J. Liao, G. Y. Yang, and C. S. Yang, “Oxidative stress and ulcerative colitis-associated carcinogenesis: studies in humans and animal models,” Carcinogenesis, vol. 24, no. 3, pp. 353–362, 2003. View at Publisher · View at Google Scholar · View at Scopus
  108. D. N. Seril, J. Liao, A. B. West, and G. Y. Yang, “High-iron diet: Foe or feat in ulcerative colitis and ulcerative colitis-associated carcinogenesis,” Journal of Clinical Gastroenterology, vol. 40, no. 5, pp. 391–397, 2006. View at Publisher · View at Google Scholar · View at Scopus
  109. R. G. Hardy, S. J. Meltzer, and J. A. Jankowski, “ABC of colorectal cancer: molecular basis for risk factors,” British Medical Journal, vol. 321, no. 7265, pp. 886–889, 2000. View at Scopus
  110. K. Makiyama, F. Takeshima, and T. Hamamoto, “Efficacy of rebamipide enemas in active distal ulcerative colitis and proctitis: a prospective study report,” Digestive Diseases and Sciences, vol. 50, no. 12, pp. 2323–2329, 2005. View at Publisher · View at Google Scholar · View at Scopus
  111. T. Tanaka, H. Kohno, R. Suzuki et al., “Dextran sodium sulfate strongly promotes colorectal carcinogenesis in ApcMin/+ mice: inflammatory stimuli by dextran sodium sulfate results in development of multiple colonic neoplasms,” International Journal of Cancer, vol. 118, no. 1, pp. 25–34, 2006. View at Publisher · View at Google Scholar
  112. S. P. Hussain, P. Amstad, K. Raja et al., “Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease,” Cancer Research, vol. 60, no. 13, pp. 3333–3337, 2000. View at Scopus
  113. G. C. Burmer, D. A. Crispin, V. R. Kolli et al., “Frequent loss of a p53 allele in carcinomas and their precursors in ulcerative colitis,” Cancer Communications, vol. 3, no. 6, pp. 167–172, 1991. View at Scopus
  114. W. C. I. Chang, R. A. Coudry, M. I. Clapper et al., “Loss of p53 enhances the induction of colitis-associated neoplasia by dextran sulfate sodium,” Carcinogenesis, vol. 28, no. 11, pp. 2375–2381, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. S. Fujii, T. Fujimori, H. Kawamata et al., “Development of colonic neoplasia in p53 deficient mice with experimental colitis induced by dextran sulphate sodium,” Gut, vol. 53, no. 5, pp. 710–716, 2004. View at Publisher · View at Google Scholar · View at Scopus
  116. D. A. Wink, Y. Vodovotz, J. Laval, F. Laval, M. W. Dewhirst, and J. B. Mitchell, “The multifaceted roles of nitric oxide in cancer,” Carcinogenesis, vol. 19, no. 5, pp. 711–721, 1998. View at Publisher · View at Google Scholar · View at Scopus
  117. M. Jaiswal, N. F. LaRusso, and G. J. Gores, “Nitric oxide in gastrointestinal epithelial cell carcinogenesis: linking inflammation to oncogenesis,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 281, no. 3, pp. G626–G634, 2001. View at Scopus
  118. D. N. Seril, J. Liao, and G. Y. Yang, “Colorectal carcinoma development in inducible nitric oxide synthase-deficient mice with dextran sulfate sodium-induced ulcerative colitis,” Molecular Carcinogenesis, vol. 46, no. 5, pp. 341–353, 2007. View at Publisher · View at Google Scholar · View at Scopus
  119. A. S. Fleisher, M. Esteller, N. Harpaz et al., “Microsatellite instability in inflammatory bowel disease-associated neoplastic lesions is associated with hypermethylation and diminished expression of the DNA mismatch repair gene, hMLH1,” Cancer Research, vol. 60, no. 17, pp. 4864–4868, 2000. View at Scopus
  120. L. Cawkwell, F. Sutherland, H. Murgatroyd et al., “Defective hMSH2/hMLH1 protein expression is seen infrequently in ulcerative colitis associated colorectal cancers,” Gut, vol. 46, no. 3, pp. 367–369, 2000. View at Publisher · View at Google Scholar · View at Scopus
  121. M. R. J. Kohonen-Corish, J. J. Daniel, H. te Riele, G. D. Buffinton, and J. E. Dahlstrom, “Susceptibility of Msh2-deficient mice to inflammation-associated colorectal tumors,” Cancer Research, vol. 62, no. 7, pp. 2092–2097, 2002. View at Scopus
  122. E. Mizoguchi, “Chitinase 3-like-1 exacerbates intestinal inflammation by enhancing bacterial adhesion and invasion in colonic epithelial cells,” Gastroenterology, vol. 130, no. 2, pp. 398–411, 2006. View at Publisher · View at Google Scholar · View at Scopus
  123. I. G. Barrison, P. D. Roberts, and S. P. Kane, “Oral or parenteral iron treatment in chronic ulcerative colitis?” British Medical Journal, vol. 282, no. 6275, p. 1514, 1981. View at Scopus
  124. J. M. Ward, “Morphogenesis of chemically induced neoplasms of the colon and small intestine in rats,” Laboratory Investigation, vol. 30, no. 4, pp. 505–513, 1974. View at Scopus
  125. R. N. DuBois, A. Radhika, B. S. Reddy, and A. J. Entingh, “Increased cyclooxygenase-2 levels in carcinogen-induced rat colonic tumors,” Gastroenterology, vol. 110, no. 4, pp. 1259–1262, 1996. View at Publisher · View at Google Scholar · View at Scopus
  126. K. Guda, C. Giardina, P. Nambiar, H. Cui, and D. W. Rosenberg, “Aberrant transforming growth factor-β signaling in azoxymethane-induced mouse colon tumors,” Molecular Carcinogenesis, vol. 31, no. 4, pp. 204–213, 2001. View at Publisher · View at Google Scholar · View at Scopus
  127. N. K. Relan, A. Saeed, K. Ponduri, S. E. G. Fligiel, S. Dutta, and A. P. N. Majumdar, “Identification and evaluation of the role of endogenous tyrosine kinases in azoxymethane induction of proliferative processes in the colonic mucosa of rats,” Biochimica et Biophysica Acta, vol. 1244, no. 2-3, pp. 368–376, 1995. View at Publisher · View at Google Scholar · View at Scopus
  128. T. Tanaka, “Colorectal carcinogenesis: review of human and experimental animal studies,” Journal of Carcinogenesis, vol. 8, article 5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. J. M. Uronis, M. Mühlbauer, H. H. Herfarth, T. C. Rubinas, G. S. Jones, and C. Jobin, “Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility,” PLoS ONE, vol. 4, no. 6, article e6026, 2009. View at Publisher · View at Google Scholar · View at Scopus
  130. A. Borthakur, S. Bhattacharyya, P. K. Dudeja, and J. K. Tobacman, “Carrageenan induces interleukin-8 production through distinct Bcl10 pathway in normal human colonic epithelial cells,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 292, no. 3, pp. G829–G838, 2007. View at Publisher · View at Google Scholar
  131. S. Bhattacharyya, P. K. Dudeja, and J. K. Tobacman, “Carrageenan-induced NFκB activation depends on distinct pathways mediated by reactive oxygen species and Hsp27 or by Bcl10,” Biochimica et Biophysica Acta, vol. 1780, no. 7-8, pp. 973–982, 2008. View at Publisher · View at Google Scholar · View at Scopus
  132. D. Wallach, E. E. Varfolomeev, N. L. Malinin, Y. V. Goltsev, A. V. Kovalenko, and M. P. Boldin, “Tumor necrosis factor receptor and Fas signaling mechanisms,” Annual Review of Immunology, vol. 17, pp. 331–367, 1999. View at Publisher · View at Google Scholar · View at Scopus
  133. F. X. Pimentel-Muiños and B. Seed, “Regulated commitment of TNF receptor signaling: a molecular switch for death or activation,” Immunity, vol. 11, no. 6, pp. 783–793, 1999. View at Scopus
  134. B. K. Popivanova, F. I. Kostadinova, K. Furuichi et al., “Blockade of a chemokine, CCL2, reduces chronic colitis-associated carcinogenesis in mice,” Cancer Research, vol. 69, no. 19, pp. 7884–7892, 2009. View at Publisher · View at Google Scholar · View at Scopus
  135. S. I. Grivennikov, D. V. Kuprash, Z. Liu, and S. A. Nedospasov, “Intracellular signals and events activated by cytokines of the tumor necrosis factor superfamily: from simple paradigms to complex mechanisms,” International Review of Cytology, vol. 252, pp. 129–161, 2006. View at Publisher · View at Google Scholar
  136. P. Rutgeerts, G. van Assche, and S. Vermeire, “Optimizing anti-TNF treatment in inflammatory bowel disease,” Gastroenterology, vol. 126, no. 6, pp. 1593–1610, 2004. View at Publisher · View at Google Scholar · View at Scopus
  137. K. Peppel, D. Crawford, and B. Beutler, “A tumor necrosis factor (TNF) receptor-IgG heavy chain chimeric protein as a bivalent antagonist of TNF activity,” Journal of Experimental Medicine, vol. 174, no. 6, pp. 1483–1489, 1991. View at Scopus
  138. E. Burstein and E. R. Fearon, “Colitis and cancer: a tale of inflammatory cells and their cytokines,” Journal of Clinical Investigation, vol. 118, no. 2, pp. 464–467, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. T. Bongartz, A. J. Sutton, M. J. Sweeting, I. Buchan, E. L. Matteson, and V. Montori, “Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials,” Journal of the American Medical Association, vol. 295, no. 19, pp. 2275–2285, 2006. View at Publisher · View at Google Scholar
  140. L. Biancone, C. Petruzziello, E. Calabrese et al., “Long-term safety of Infliximab for the treatment of inflammatory bowel disease: does blocking TNFα reduce colitis-associated colorectal carcinogenesis?” Gut, vol. 58, no. 12, article 1703, 2009. View at Publisher · View at Google Scholar
  141. K. Hoebe, E. Janssen, and B. Beutler, “The interface between innate and adaptive immunity,” Nature Immunology, vol. 5, no. 10, pp. 971–974, 2004. View at Publisher · View at Google Scholar · View at Scopus
  142. P. C. Heinrich, I. Behrmann, G. Muller-Newen, F. Schaper, and L. Graeve, “Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway,” Biochemical Journal, vol. 334, part 2, pp. 297–314, 1998.
  143. M. Veldhoen, R. J. Hocking, C. J. Atkins, R. M. Locksley, and B. Stockinger, “TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells,” Immunity, vol. 24, no. 2, pp. 179–189, 2006. View at Publisher · View at Google Scholar
  144. M. O. Li, Y. Y. Wan, and R. A. Flavell, “T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation,” Immunity, vol. 26, no. 5, pp. 579–591, 2007. View at Publisher · View at Google Scholar · View at Scopus
  145. R. Atreya, J. Mudter, S. Finotto et al., “Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in Crohn disease and experimental colitis in vivo,” Nature Medicine, vol. 6, no. 5, pp. 583–588, 2000. View at Publisher · View at Google Scholar · View at Scopus
  146. M. Yamamoto, K. Yoshizaki, T. Kishimoto, and H. Ito, “IL-6 is required for the development of Th1 cell-mediated murine colitis,” Journal of Immunology, vol. 164, no. 9, pp. 4878–4882, 2000. View at Scopus
  147. D. Yen, J. Cheung, H. Scheerens et al., “IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6,” Journal of Clinical Investigation, vol. 116, no. 5, pp. 1310–1316, 2006. View at Publisher · View at Google Scholar · View at Scopus
  148. M. Noguchi, N. Hiwatashi, Z. Liu, and T. Toyota, “Secretion imbalance between tumour necrosis factor and its inhibitor in inflammatory bowel disease,” Gut, vol. 43, no. 2, pp. 203–209, 1998.
  149. I. Okayasu, M. Yamada, T. Mikami, T. Yoshida, J. Kanno, and T. Ohkusa, “Dysplasia and carcinoma development in a repeated dextran sulfate sodium-induced colitis model,” Journal of Gastroenterology and Hepatology, vol. 17, no. 10, pp. 1078–1083, 2002. View at Publisher · View at Google Scholar
  150. K. Mitsuyama, S. Matsumoto, S. Rose-John et al., “STAT3 activation via interleukin 6 trans-signalling contributes to ileitis in SAMP1/Yit mice,” Gut, vol. 55, no. 9, pp. 1263–1269, 2006. View at Publisher · View at Google Scholar · View at Scopus
  151. H. Ito, M. Takazoe, Y. Fukuda et al., “A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn's disease,” Gastroenterology, vol. 126, no. 4, pp. 989–996, 2004. View at Publisher · View at Google Scholar · View at Scopus
  152. J. I. Fenton, S. D. Hursting, S. N. Perkins, and N. G. Hord, “Interleukin-6 production induced by leptin treatment promotes cell proliferation in an Apc (Min/+) colon epithelial cell line,” Carcinogenesis, vol. 27, no. 7, pp. 1507–1515, 2006. View at Publisher · View at Google Scholar · View at Scopus
  153. C. Becker, M. C. Fantini, S. Wirtz et al., “IL-6 signaling promotes tumor growth in colorectal cancer,” Cell Cycle, vol. 4, no. 2, pp. 217–220, 2005. View at Scopus
  154. Y. C. Chung and Y. F. Chang, “Serum interleukin-6 levels reflect the disease status of colorectal cancer,” Journal of Surgical Oncology, vol. 83, no. 4, pp. 222–226, 2003. View at Publisher · View at Google Scholar · View at Scopus
  155. H. Yu, D. Pardoll, and R. Jove, “STATs in cancer inflammation and immunity: a leading role for STAT3,” Nature Reviews Cancer, vol. 9, no. 11, pp. 798–809, 2009. View at Publisher · View at Google Scholar · View at Scopus
  156. J. Bollrath, T. J. Phesse, V. A. von Burstin et al., “gp130-mediated stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis,” Cancer Cell, vol. 15, no. 2, pp. 91–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  157. R. Atreya and M. F. Neurath, “Involvement of IL-6 in the pathogenesis of inflammatory bowel disease and colon cancer,” Clinical Reviews in Allergy and Immunology, vol. 28, no. 3, pp. 187–195, 2005. View at Publisher · View at Google Scholar · View at Scopus
  158. W. E. Naugler and M. Karin, “The wolf in sheep's clothing: the role of interleukin-6 in immunity, inflammation and cancer,” Trends in Molecular Medicine, vol. 14, no. 3, pp. 109–119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  159. C. Becker, M. C. Fantini, C. Schramm et al., “TGF-β suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling,” Immunity, vol. 21, no. 4, pp. 491–501, 2004. View at Publisher · View at Google Scholar · View at Scopus
  160. YI. Li, C. de Haar, M. Chen et al., “Disease-related expression of the IL6/STAT3/SOCS3 signalling pathway in ulcerative colitis and ulcerative colitis-related carcinogenesis,” Gut, vol. 59, no. 2, pp. 227–235, 2010. View at Publisher · View at Google Scholar · View at Scopus
  161. C. S. R. Lankford and D. M. Frucht, “A unique role for IL-23 in promoting cellular immunity,” Journal of Leukocyte Biology, vol. 73, no. 1, pp. 49–56, 2003. View at Publisher · View at Google Scholar · View at Scopus
  162. C. Abraham and J. H. Cho, “IL-23 and autoimmunity: new insights into the pathogenesis of inflammatory bowel disease,” Annual Review of Medicine, vol. 60, pp. 97–110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  163. P. P. Ahern, A. Izcue, K. J. Maloy, and F. Powrie, “The interleukin-23 axis in intestinal inflammation,” Immunological Reviews, vol. 226, no. 1, pp. 147–159, 2008. View at Publisher · View at Google Scholar · View at Scopus
  164. J. L. Langowski, X. Zhang, L. Wu et al., “IL-23 promotes tumour incidence and growth,” Nature, vol. 442, no. 7101, pp. 461–465, 2006. View at Publisher · View at Google Scholar · View at Scopus
  165. B. E. Shan, J. S. Hao, Q. X. Li, and M. Tagawa, “Antitumor activity and immune enhancement of murine interleukin-23 expressed in murine colon carcinoma cells,” Cellular & Molecular Immunology, vol. 3, no. 1, pp. 47–52, 2006. View at Scopus
  166. W. Shen and S. K. Durum, “Synergy of IL-23 and Th17 cytokines: new light on inflammatory bowel disease,” Neurochemical Research, vol. 35, no. 6, pp. 940–946, 2010. View at Publisher · View at Google Scholar · View at Scopus
  167. M. Oshima, H. Oshima, K. Kitagawa, M. Kobayashi, C. Itakura, and M. Taketo, “Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 10, pp. 4482–4486, 1995. View at Scopus
  168. M. Fukata, A. Chen, A. Klepper et al., “Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: role in proliferation and apoptosis in the intestine,” Gastroenterology, vol. 131, no. 3, pp. 862–877, 2006. View at Publisher · View at Google Scholar · View at Scopus
  169. Y. Hernandez, J. Sotolongo, K. Breglio et al., “The role of prostaglandin E2(PGE 2) in Toll-like receptor 4 (TLR4)-mediated colitis-associated neoplasia,” BMC Gastroenterology, vol. 10, article 82, 2010. View at Publisher · View at Google Scholar
  170. M. M. Taketo, “COX-2 and colon cancer,” Inflammation Research, vol. 47, no. 2, pp. S112–S116, 1998. View at Scopus
  171. K. Mukawa, S. Fujii, K. Tominaga et al., “Inhibitory effects of the cyclooxygenase-2 inhibitor, etodolac, on colitis-associated tumorigenesis in p53-deficient mice treated with dextran sulfate sodium,” Oncology Reports, vol. 19, no. 2, pp. 393–399, 2008.
  172. C. J. Grubbs, R. A. Lubet, A. T. Koki et al., “Celecoxib inhibits N-butyl-N-(4-hydroxybutyl)-nitrosamine-induced urinary bladder cancers in male B6D2F1 mice and female Fischer-344 rats,” Cancer Research, vol. 60, no. 20, pp. 5599–5602, 2000. View at Scopus
  173. G. D. Basu, L. B. Pathangey, T. L. Tinder, S. J. Gendler, and P. Mukherjee, “Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells,” Breast Cancer Research, vol. 7, no. 4, pp. R422–435, 2005. View at Scopus
  174. J. Lin, P. W. Hsiao, T. H. Chiu, and J. I. Chao, “Combination of cyclooxygenase-2 inhibitors and oxaliplatin increases the growth inhibition and death in human colon cancer cells,” Biochemical Pharmacology, vol. 70, no. 5, pp. 658–667, 2005. View at Publisher · View at Google Scholar · View at Scopus
  175. A. Haynes, M. S. Shaik, A. Chatterjee, and M. Singh, “Formulation and evaluation of aerosolized celecoxib for the treatment of lung cancer,” Pharmaceutical Research, vol. 22, no. 3, pp. 427–439, 2005. View at Publisher · View at Google Scholar
  176. S. D. Solomon, M. A. Pfeffer, J. J. V. McMurray et al., “Effect of celecoxib on cardiovascular events and blood pressure in two trials for the prevention of colorectal adenomas,” Circulation, vol. 114, no. 10, pp. 1028–1035, 2006. View at Publisher · View at Google Scholar
  177. S. D. Solomon, J. Wittes, P. V. Finn et al., “Cardiovascular risk of celecoxib in 6 randomized placebo-controlled trials: the cross trial safety analysis,” Circulation, vol. 117, no. 16, pp. 2104–2113, 2008. View at Publisher · View at Google Scholar
  178. C. Bosetti, S. Gallus, and C. La Vecchia, “Aspirin and cancer risk: an update to 2001,” European Journal of Cancer Prevention, vol. 11, no. 6, pp. 535–542, 2002. View at Publisher · View at Google Scholar · View at Scopus
  179. J. A. Baron, B. F. Cole, R. S. Sander, et al., “A randomized trial of aspirin to prevent colorectal adenomas. A randomized trial od aspirin to prevent colorectal adenomas,” New England Journal of Medicine, vol. 40, pp. 289–292, 2003.
  180. R. S. Sandler, S. Halabi, J. A. Baron et al., “A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer,” New England Journal of Medicine, vol. 348, no. 10, pp. 883–890, 2003. View at Publisher · View at Google Scholar
  181. P. A. Craven and F. R. DeRubertis, “Effects of aspirin on 1,2-dimethylhydrazine-induced colonic carcinogenesis,” Carcinogenesis, vol. 13, no. 4, pp. 541–546, 1992. View at Scopus
  182. B. S. Reddy, C. V. Rao, A. Rivenson, and G. Kelloff, “Inhibitory effect of aspirin on azoxymethane-induced colon carcinogenesis in F344 rats,” Carcinogenesis, vol. 14, no. 8, pp. 1493–1497, 1993. View at Scopus
  183. N. N. Mahmoud, A. J. Dannenberg, J. Mestre et al., “Aspirin prevents tumors in a murine model of familial adenomatous polyposis,” Surgery, vol. 124, no. 2, pp. 225–231, 1998. View at Publisher · View at Google Scholar
  184. J. Paterson, G. Baxter, J. Lawrence, and G. Duthie, “Is there a role for dietary salicylates in health?” Proceedings of the Nutrition Society, vol. 65, no. 1, pp. 93–96, 2006. View at Publisher · View at Google Scholar
  185. S. Pestka, C. D. Krause, D. Sarkar, M. R. Walter, Y. Shi, and P. B. Fisher, “Interleukin-10 and related cytokines and receptors,” Annual Review of Immunology, vol. 22, pp. 929–979, 2004. View at Publisher · View at Google Scholar · View at Scopus
  186. A. S. Ho, S. H. Wei, A. L. Mui, A. Miyajima, and K. W. Moore, “Functional regions of the mouse interleukin-10 receptor expression on human natural killer cells,” Blood, vol. 85, pp. 3577–3585, 1995.
  187. R. Kuhn, J. Lohler, D. Rennick, K. Rajewski, and W. Muller, “Interleukin-10-deficient mice develop chronic colonic enterocolitis,” Cell, vol. 75, pp. 263–274, 1993.
  188. W. G. Stetler-Stevenson, S. Aznavoorian, and L. A. Liotta, “Tumor cell interactions with the extracellular matrix during invasion and metastasis,” Annual Review of Cell Biology, vol. 9, pp. 541–573, 1993. View at Scopus
  189. N. Khalil, “TGF-β: from latent to active,” Microbes and Infection, vol. 1, no. 15, pp. 1255–1263, 1999. View at Publisher · View at Google Scholar · View at Scopus
  190. M. C. Fantini, C. Becker, G. Monteleone, F. Pallone, P. R. Galle, and M. F. Neurath, “Cutting edge: TGF-β induces a regulatory phenotype in CD4 +CD25- T cells through Foxp3 induction and down-regulation of Smad7,” Journal of Immunology, vol. 172, no. 9, pp. 5149–5153, 2004.
  191. D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000. View at Scopus
  192. G. C. Blobe, W. P. Schiemann, and H. F. Lodish, “Role of transforming growth factor β in human disease,” New England Journal of Medicine, vol. 342, no. 18, pp. 1350–1358, 2000. View at Publisher · View at Google Scholar · View at Scopus
  193. S. J. Engle, I. Ormsby, S. Pawlowski et al., “Elimination of colon cancer in germ-free transforming growth factor beta 1-deficient mice,” Cancer Research, vol. 62, no. 22, pp. 6362–6366, 2002.
  194. D. Leroith and C. T. Roberts, “Insulin-like growth factors,” Annals of the New York Academy of Sciences, vol. 692, pp. 1–9, 1993. View at Scopus
  195. D. Germs and L. Partridge, “Insulin/IGF signaling and ageing:seeing the bigger picture,” Current Opinion in Genetics & Development, vol. 11, pp. 287–292, 2001.
  196. E. Foulstone, S. Prince, O. Zaccheo et al., “Insulin-like growth factor ligands, receptors, and binding proteins in cancer,” Journal of Pathology, vol. 205, no. 2, pp. 145–153, 2005. View at Publisher · View at Google Scholar · View at Scopus
  197. A. P. Feinberg and B. Tycko, “The history of cancer epigenetics,” Nature Reviews Cancer, vol. 4, no. 2, pp. 143–153, 2004. View at Scopus
  198. H. Cui, P. Onyango, S. Brandenburg, Y. Wu, C. L. Hsieh, and A. P. Feinberg, “Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2,” Cancer Research, vol. 62, no. 22, pp. 6442–6446, 2002. View at Scopus
  199. H. Cui, M. Cruz-Correa, F. M. Giardiello et al., “Loss of IGF2 imprinting: a potential marker of colorectal cancer risk,” Science, vol. 299, no. 5613, pp. 1753–1755, 2003. View at Publisher · View at Google Scholar · View at Scopus
  200. T. Sakatani, A. Kaneda, C. A. Iacobuzio-Donahue et al., “Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice,” Science, vol. 307, no. 5717, pp. 1976–1978, 2005. View at Publisher · View at Google Scholar · View at Scopus
  201. A. Kaneda, C. J. Wang, R. Cheong et al., “Enhanced sensitivity to IGF-II signaling links loss of imprinting of IGF2 to increased cell proliferation and tumor risk,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 52, pp. 20926–20931, 2007. View at Publisher · View at Google Scholar
  202. E. K. Maloney, J. L. McLaughlin, N. E. Dagdigian et al., “An anti-insulin-like growth factor I receptor antibody that is a potent inhibitor of cancer cell proliferation,” Cancer Research, vol. 63, no. 16, pp. 5073–5083, 2003. View at Scopus
  203. C. S. Mitsiades, N. S. Mitsiades, C. J. McMullan et al., “Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors,” Cancer Cell, vol. 5, no. 3, pp. 221–230, 2004. View at Publisher · View at Google Scholar
  204. G. Carpenter and S. Cohen, “Epidermal growth factor,” Journal of Biological Chemistry, vol. 265, no. 14, pp. 7709–7712, 1990.
  205. L. Cawkwell, F. Sutherland, H. Murgatroyd et al., “Defective hMSH2/hMLH1 protein expression is seen infrequently in ulcerative colitis associated colorectal cancers,” Gut, vol. 46, no. 3, pp. 367–369, 2000. View at Publisher · View at Google Scholar
  206. R. S. Herbst, “Review of epidermal growth factor receptor biology,” International Journal of Radiation Oncology Biology Physics, vol. 59, no. 2, pp. 21–26, 2004. View at Publisher · View at Google Scholar · View at Scopus
  207. A. Sinha, J. Nightingale, K. P. West, J. Berlanga-Acosta, and R. J. Playford, “Epidermal growth factor enemas with oral mesalamine for mild-to-moderate left-sided ulcerative colitis or proctitis,” New England Journal of Medicine, vol. 349, no. 4, pp. 350–357, 2003. View at Publisher · View at Google Scholar · View at Scopus
  208. O. Bashir, A. J. Fitzgerald, J. Berlanga-Acosta, R. J. Playford, and R. A. Goodlad, “Effect of epidermal growth factor administration on intestinal cell proliferation, crypt fission and polyp formation in multiple intestinal neoplasia (Min) mice,” Clinical Science, vol. 105, no. 3, pp. 323–330, 2003. View at Publisher · View at Google Scholar · View at Scopus
  209. A. Fichera, N. Little, S. Jagadeeswaran et al., “Epidermal growth factor receptor signaling is required for microadenoma formation in the mouse azoxymethane model of colonic carcinogenesis,” Cancer Research, vol. 67, no. 2, pp. 827–835, 2007. View at Publisher · View at Google Scholar · View at Scopus
  210. T. Hu and C. Li, “Convergence between Wnt-β-catenin and EGFR signaling in cancer,” Molecular Cancer, vol. 9, pp. 236–242, 2010. View at Publisher · View at Google Scholar
  211. J.-A. Park, J. M. Drazen, and D. J. Tschumperlin, “The Chitinase-like protein YKL-40 is secreted by airway epithelial cells at base line and in response to compressive mechanical stress,” Journal of Biological Chemistry, vol. 285, no. 39, pp. 29817–29825, 2010. View at Publisher · View at Google Scholar
  212. R. Shao, K. Hamel, L. Petersen et al., “YKL-40, a secreted glycoprotein, promotes tumor angiogenesis,” Oncogene, vol. 28, no. 50, pp. 4456–4468, 2009. View at Publisher · View at Google Scholar · View at Scopus
  213. G. Cohen, R. Mustafi, A. Chumsangsri et al., “Epidermal growth factor receptor signaling is up-regulated in human colonic aberrant crypt foci,” Cancer Research, vol. 66, no. 11, pp. 5656–5664, 2006. View at Publisher · View at Google Scholar
  214. Y. Liu, J. Ju, H. Xiao et al., “Effects of combination of calcium and aspirin on azoxymethane-induced aberrant crypt foci formation in the colons of mice and rats,” Nutrition and Cancer, vol. 60, no. 5, pp. 660–665, 2008. View at Publisher · View at Google Scholar · View at Scopus
  215. M. J. Wargovich, D. Allnutt, C. Palmer, P. Anaya, and L. C. Stephens, “Inhibition of the promotional phase of azoxymethane-induced colon carcinogenesis in the F344 rat by calcium lactate: effect of simulating two human nutrient density levels,” Cancer Letters, vol. 53, no. 1, pp. 17–25, 1990. View at Publisher · View at Google Scholar
  216. M. J. Wargovich, P. M. Lynch, and B. Levin, “Modulating effects of calcium in animal models of colon carcinogenesis and short-term studies in subjects at increased risk for colon cancer,” American Journal of Clinical Nutrition, vol. 54, no. 1, pp. 202S–205S, 1991. View at Scopus
  217. M. L. McCullough, A. S. Robertson, C. Rodriguez et al., “Calcium, vitamin D, dairy products, and risk of colorectal cancer in the Cancer Prevention Study II Nutrition Cohort (United States),” Cancer Causes and Control, vol. 14, no. 1, pp. 1–12, 2003. View at Publisher · View at Google Scholar · View at Scopus
  218. K. Wu, W. C. Willett, C. S. Fuchs, G. A. Colditz, and E. L. Giovannucci, “Calcium intake and risk of colon cancer in women and men,” Journal of the National Cancer Institute, vol. 94, no. 6, pp. 437–446, 2002. View at Scopus
  219. P. Terry, J. A. Baron, L. Bergkvist, L. Holmberg, and A. Wolk, “Dietary calcium and vitamin D intake and risk of colorectal cancer: a prospective cohort study in women,” Nutrition and Cancer, vol. 43, no. 1, pp. 39–46, 2002. View at Scopus
  220. Y. Park, M. F. Leitzmann, A. F. Subar, A. Hollenbeck, and A. Schatzkin, “Dairy food, calcium, and risk of cancer in the NIH-AARP diet and health study,” Archives of Internal Medicine, vol. 169, no. 4, pp. 391–401, 2009. View at Publisher · View at Google Scholar · View at Scopus
  221. S. A. Lamprecht and M. Lipkin, “Cellular mechanisms of calcium and vitamin D in the inhibition of colorectal carcinogenesis,” Annals of the New York Academy of Sciences, vol. 952, pp. 73–87, 2001.
  222. E. J. Fernandez and E. Lolis, “Structure, function, and inhibition of chemokines,” Annual Review of Pharmacology and Toxicology, vol. 42, pp. 469–499, 2002. View at Publisher · View at Google Scholar
  223. H. Wang, C. Czura, and K. Tracey, “TNF,” in The Cytokine Handbook, A. Thomson and M. Lotze, Eds., pp. 837–860, Elsevier Science, London, UK, 2003.
  224. C. Garlanda, F. Riva, T. Veliz et al., “Increased susceptibility to colitis-associated cancer of mice lacking TIR8, an inhibitory member of the interleukin-1 receptor family,” Cancer Research, vol. 67, no. 13, pp. 6017–6021, 2007. View at Publisher · View at Google Scholar · View at Scopus
  225. D. Wang, H. Wang, J. Brown et al., “CXCL1 induced by prostaglandin E promotes angiogenesis in colorectal cancer,” Journal of Experimental Medicine, vol. 203, no. 4, pp. 941–951, 2006. View at Publisher · View at Google Scholar · View at Scopus
  226. K. Sakamoto and S. Maeda, “Targeting NF-κB for colorectal cancer,” Expert Opinion on Therapeutic Targets, vol. 14, no. 6, pp. 593–601, 2010. View at Publisher · View at Google Scholar · View at Scopus
  227. R. J. B. Nibbs, E. Kriehuber, P. D. Ponath et al., “The β-chemokine receptor D6 is expressed by lymphatic endothelium and a subset of vascular tumors,” American Journal of Pathology, vol. 158, no. 3, pp. 867–877, 2001. View at Scopus
  228. M. Shahabuddin, T. Toyoshima, M. Aikawa, and D. C. Kaslow, “Transmission-blocking activity of a Chitinase inhibitor and activation of malarial parasite Chitinase by mosquito protease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 9, pp. 4266–4270, 1993. View at Scopus
  229. B. Henrissat and G. Davies, “Structural and sequence-based classification of glycoside hydrolases,” Current Opinion in Structural Biology, vol. 7, no. 5, pp. 637–644, 1997. View at Publisher · View at Google Scholar · View at Scopus
  230. B. E. Hakala, C. White, and A. D. Recklies, “Human cartilage gp-39, a major secretory product of articular chondrocytes and synovial cells, is a Mammalian member of a Chitinase protein family,” Journal of Biological Chemistry, vol. 268, no. 34, pp. 25803–25810, 1993. View at Scopus
  231. R. G. Boot, E. F. C. Blommaart, E. Swart et al., “Identification of a novel acidic Mammalian Chitinase distinct from chitotriosidase,” Journal of Biological Chemistry, vol. 276, no. 9, pp. 6770–6778, 2001. View at Publisher · View at Google Scholar · View at Scopus
  232. C. E. M. Hollak, S. van Weely, M. H. J. van Oers, and J. M. F. G. Aerts, “Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease,” Journal of Clinical Investigation, vol. 93, no. 3, pp. 1288–1292, 1994. View at Scopus
  233. H. M. Jin, N. G. Copeland, D. J. Gilbert, N. A. Jenkins, R. B. Kirkpatrick, and M. Rosenberg, “Genetic characterization of the murine Ym1 gene and identification of a cluster of highly homologous genes,” Genomics, vol. 54, no. 2, pp. 316–322, 1998. View at Publisher · View at Google Scholar · View at Scopus
  234. I. Vind, J. S. Johansen, P. A. Price, and P. Munkholm, “Serum YKL-40, a potential new marker of disease activity in patients with inflammatory bowel disease,” Scandinavian Journal of Gastroenterology, vol. 38, no. 6, pp. 599–605, 2003. View at Publisher · View at Google Scholar
  235. C. Cintin, J. S. Johansen, I. J. Christensen, P. A. Price, S. Sørensen, and H. J. Nielsen, “High serum YKL-40 level after surgery for colorectal carcinoma is related to short survival,” Cancer, vol. 95, no. 2, pp. 267–274, 2002. View at Publisher · View at Google Scholar
  236. J. S. Johansen, B. V. Jensen, A. Roslind, D. Nielsen, and P. A. Price, “Serum YKL-40, a new prognostic biomarker in cancer patients?” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 2, pp. 194–202, 2006. View at Publisher · View at Google Scholar
  237. J. S. Johansen, “Studies on serum YKL-40 as a biomarker in diseases with inflammation, tissue remodelling, fibroses and cancer,” Danish Medical Bulletin, vol. 53, no. 2, pp. 172–209, 2006.
  238. H. F. Bigg, R. Wait, A. D. Rowan, and T. E. Cawston, “The Mammalian Chitinase-like lectin, YKL-40, binds specifically to type I collagen and modulates the rate of type I collagen fibril formation,” Journal of Biological Chemistry, vol. 281, no. 30, pp. 21082–21095, 2006. View at Publisher · View at Google Scholar · View at Scopus
  239. F. Fusetti, T. Pijning, K. H. Kalk, E. Bos, and B. W. Dijkstra, “Crystal structure and carbohydrate-binding properties of the human cartilage glycoprotein-39,” Journal of Biological Chemistry, vol. 278, no. 39, pp. 37753–37760, 2003. View at Publisher · View at Google Scholar · View at Scopus
  240. J. A. Park, J. M. Drazen, and D. J. Tschumperlin, “The Chitinase-like protein YKL-40 is secreted by airway epithelial cells at base line and in response to compressive mechanical stress,” Journal of Biological Chemistry, vol. 285, no. 39, pp. 29817–29825, 2010.