About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 348218, 7 pages
http://dx.doi.org/10.1155/2011/348218
Review Article

Optical Biosensors: A Revolution Towards Quantum Nanoscale Electronics Device Fabrication

1Department of Engineering Physics, Tripura Institute of Technology, Narsingarh, Tripura-799009, India
2Department of Electronics and Telecommunication, Tripura Institute of Technology, Narsingarh, Tripura-799009, India

Received 16 June 2011; Accepted 9 August 2011

Academic Editor: Paul W. Doetsch

Copyright © 2011 D. Dey and T. Goswami. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Luo, J. Xu, W. Zhao, and H. Chen, “Glucose biosensor based on ENFET doped with SiO2 nanoparticles,” Sensors and Actuators: B, vol. 97, no. 2-3, pp. 249–255, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Sant, M. Pourciel, J. Launay, T. Do Conto, A. Martinez, and P. Temple-Boyer, “Development of chemical field effect transistors for the detection of urea,” Sensors and Actuators: B, vol. 95, no. 1–3, pp. 309–314, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Chen, J. Chou, T. Sun, and S. Hsiung, “Portable urea biosensor based on the extended-gate field effect transistor,” Sensors and Actuators: B, vol. 91, no. 1–3, pp. 180–186, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. A. P. Soldatkin, J. Montoriol, W. Sant, C. Martelet, and N. Jaffrezic-Renault, “A novel urea sensitive biosensor with extended dynamic range based on recombinant urease and ISFETs,” Biosensors and Bioelectronics, vol. 19, no. 2, pp. 131–135, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. http://www.sensorsmag.com/list/specialty-markets/medical-16.
  6. R. P. H. Kooyman and L. M. Lechuga, “Handbook of Biosensors: Medicine,” in Food and the Environment, E. Kress-Rogers, Ed., p. 169, CRC Press, Boca Raton, Fla, USA, 1997.
  7. L. M. Lechuga, F. Prieto, and B. Sepúlveda, “Interferometric biosensors for environmental pollution detection,” in Optical Sensors for Industrial, R. Narayanaswamy and O. S. Wolfbeis, Eds., Springer, New York, NY, USA, 2003.
  8. R. G. Freeman, K. C. Grabar, K. J. Allison et al., “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science, vol. 267, no. 5204, pp. 1629–1632, 1995. View at Scopus
  9. G. Chumanov and S. Malynych, “Coupled planar silver nanoparticle arrays as refractive index sensors,” Journal of Optics A: Pure and Applied Optics, vol. 8, no. 4, pp. S144–S147, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Y. Chou and P. R. Krauss, “Imprint lithography with sub-10 nm feature size and high throughput,” Microelectronic Engineering, vol. 35, no. 1–4, pp. 237–240, 1997. View at Scopus
  11. M. Li, L. Chen, W. Zhang, and S. Y. Chou, “Pattern transfer fidelity of nanoimprint lithography on six-inch wafers,” Nanotechnology, vol. 14, no. 1, pp. 33–36, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. D. C. Turner, C. Y. Chang, K. Fang, S. L. Brandow, and D. B. Murphy, “Selective adhesion of functional microtubules to patterned silane surfaces,” Biophysical Journal, vol. 69, no. 6, pp. 2782–2789, 1995. View at Scopus
  13. A. D. McFarland and R. P. van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Letters, vol. 3, no. 8, pp. 1057–1062, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Biswas, S. A. Hussain, and D. Bhattacharjee, “Spectroscopic characterizations of nonamphiphilic 2,5-bis (5-Tert-Butyl-Benzoxazolyl)-thiophene molecules at the air-water interface and in langmuirblodgett films,” Surface Review and Letters, vol. 15, no. 6, pp. 1–8, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Dey, S. A. Hussain, R. K. Nath, and D. Bhattacharjee, “Preparation and characterization of an anionic dye-polycation molecular films by electrostatic layer-by-layer adsorption process,” Spectrochimica Acta: Part A, vol. 70, no. 2, pp. 307–312, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Analytical Chemistry, vol. 74, no. 3, pp. 504–509, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Schuck, “Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annual Review of Biophysics and Biomolecular Structure, vol. 26, pp. 541–566, 1997. View at Publisher · View at Google Scholar · View at PubMed
  18. W. Knoll, “Interfaces and thin films as seen by bound electromagnetic waves,” Annual Review of Physical Chemistry, vol. 49, no. 1, pp. 569–638, 1998. View at Scopus
  19. R. Sosnowski, M. J. Heller, E. Tu, A. H. Forster, and R. Radtkey, “Active microelectronic array system for DNA hybridization, genotyping and pharmacogenomic applications,” Psychiatric Genetics, vol. 12, no. 4, pp. 181–192, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Minunni, S. Tombelli, M. Mascini, A. Bilia, M. C. Bergonzi, and F. F. Vincieri, “An optical DNA-based biosensor for the analysis of bioactive constituents with application in drug and herbal drug screening,” Talanta, vol. 65, no. 2, pp. 578–585, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. J. F. Rusling, E. G. Hvastkovs, D. O. Hull, and J. B. Schenkman, “Biochemical applications of ultrathin films of enzymes, polyions and DNA,” Chemical Communications, no. 2, pp. 141–154, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. M. Keusgen, “Biosensors: new approaches in drug discovery,” Nature, vol. 89, no. 10, pp. 433–444, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. P. Vattanaviboon, K. Sangseekhiow, P. Winichagoon, and C. Promptmas, “Detection and haplotype differentiation of Southeast Asian α-thalassemia using polymerase chain reaction and a piezoelectric biosensor immobilized with a single oligonucleotide probe,” Translational Research, vol. 151, no. 5, pp. 246–254, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. H. Shi, T. Xia, A. E. Nel, and J. I. Yeh, “Part II: coordinated biosensors—development of enhanced nanobiosensors for biological and medical applications,” Nanomedicine, vol. 2, no. 5, pp. 599–614, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. R. Gambari and G. Feriotto, “Surface plasmon resonance for detection of genetically modified organisms in the food supply,” Journal of AOAC International, vol. 89, no. 3, pp. 893–897, 2006. View at Scopus
  26. A. Logrieco, D. W. Arrigan, K. Brengel-Pesce, P. Siciliano, and I. Tothill, “DNA arrays, electronic noses and tongues, biosensors and receptors for rapid detection of toxigenic fungi and mycotoxins: a review,” Food Additives and Contaminants, vol. 22, no. 4, pp. 335–344, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. E. R. Richter, “Biosensors: applications for dairy food industry,” Journal of Dairy Science, vol. 76, no. 10, pp. 3114–3117, 1993. View at Scopus
  28. D. Ivnitski, D. J. O'Neil, A. Gattuso, R. Schlicht, M. Calidonna, and R. Fisher, “Nucleic acid approaches for detection and identification of biological warfare and infectious disease agents,” BioTechniques, vol. 35, no. 4, pp. 862–869, 2003. View at Scopus
  29. I. Palchetti and M. Mascini, “Nucleic acid biosensors for environmental pollution monitoring,” Analyst, vol. 133, no. 7, pp. 846–854, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. F. Dondero, L. Piacentini, F. Marsano et al., “Gene transcription profiling in pollutant exposed mussels (Mytilus spp.) using a new low-density oligonucleotide microarray,” Gene, vol. 376, no. 1-2, pp. 24–36, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. P. Venier, C. de Pittà, A. Pallavicini et al., “Development of mussel mRNA profiling: can gene expression trends reveal coastal water pollution?” Mutation Research, vol. 602, no. 1-2, pp. 121–134, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. M. J. LaGier, J. W. Fell, and K. D. Goodwin, “Electrochemical detection of harmful algae and other microbial contaminants in coastal waters using hand-held biosensors,” Marine Pollution Bulletin, vol. 54, no. 6, pp. 757–770, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. A. Kahvejian, J. Quackenbush, and J. F. Thompson, “What would you do if you could sequence everything?” Nature Biotechnology, vol. 26, no. 10, pp. 1125–1133, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. J. Shendure and H. Ji, “Next-generation DNA sequencing,” Nature Biotechnology, vol. 26, no. 10, pp. 1135–1145, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. S. Nagl, M. Schaeferling, and O. S. Wolfbeis, “Fluorescence analysis in microarray technology,” Microchimica Acta, vol. 151, no. 1-2, pp. 1–21, 2005. View at Publisher · View at Google Scholar
  36. H. Sirringhaus, P. J. Brown, R. H. Friend et al., “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature, vol. 401, no. 6754, pp. 685–688, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Kong, N. R. Franklin, C. Zhou et al., “Nanotube molecular wires as chemical sensors,” Science, vol. 287, no. 5453, pp. 622–625, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Schäferling and S. Nagl, “Optical technologies for the read out and quality control of DNA and protein microarrays,” Analytical and Bioanalytical Chemistry, vol. 385, no. 3, pp. 500–517, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. N. Jaffrezic-Renault, C. Martelet, P. Clechet, et al., “Comparison of two transduction modes for design of microbiosensors applicable to detection of pesticides (S&M 0233),” Sensors and Materials, vol. 8, pp. 161–168, 1996.
  40. M. Dufva, “Fabrication of high quality microarrays,” Biomolecular Engineering, vol. 22, no. 5-6, pp. 173–184, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. A. Sassolas, B. D. Leca-Bouvier, and L. J. Blum, “DNA biosensors and microarrays,” Chemical Reviews, vol. 108, no. 1, pp. 109–139, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. S. Campanaro, C. Romualdi, M. Fanin et al., “Gene expression profiling in dysferlinopathies using a dedicated muscle microarray,” Human Molecular Genetics, vol. 11, no. 26, pp. 3283–3298, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Campàs and I. Katakis, “DNA biochip arraying, detection and amplification strategies,” Trends in Analytical Chemistry, vol. 23, no. 1, pp. 49–62, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Branton, D. W. Deamer, A. Marziali et al., “The potential and challenges of nanopore sequencing,” Nature Biotechnology, vol. 26, no. 10, pp. 1146–1153, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. J. A. Shendure, G. J. Porreca, and G. M. Church, “Overview of DNA sequencing strategies,” Current Protocols in Molecular Biology, no. 81, pp. 7.1.1–7.1.11, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. J. Eid, A. Fehr, J. Gray et al., “Real-time DNA sequencing from single polymerase molecules,” Science, vol. 323, no. 5910, pp. 133–138, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. S. A. Hussain, D. Dey, D. Bhattacharjee, and S. Sinha, “Immobilization of single strand DNA on solid substrate,” Chemical Physics Letters, vol. 450, no. 1–3, pp. 49–54, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Dey, S. A. Hussain, and D. Bhattacharjee, “Layer-by-layer self assembled films of rosebengal,” International Journal of Modern Physics B. In press.
  49. S. A. Hussain, M. N. Islam, H. Leeman, and D. Bhattacharjee, “Aggregation of p-terphenyl along with PMMA/SA at the Langmuir and Langmuir-Blodgett films,” Surface Review and Letters, vol. 15, no. 4, pp. 1–9, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. D. Dey, M. N. Islam, S. A. Hussain, and D. Bhattacharjee, “Effect of temperature and ionic concentration on self-assembled films of Chicago sky blue,” Chinese Physics Letters, vol. 25, no. 10, pp. 3732–3734, 2008. View at Publisher · View at Google Scholar · View at Scopus