About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 456076, 9 pages
http://dx.doi.org/10.1155/2011/456076
Research Article

No Evidence for Statin-induced Proteinuria in Healthy Volunteers as Assessed by Proteomic Analysis

Laboratory of Pathophysiology, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium

Received 21 April 2011; Revised 14 June 2011; Accepted 4 July 2011

Academic Editor: Yeon-Kyun Shin

Copyright © 2011 Anja Verhulst et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Tobert, “Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors,” Nature Reviews Drug Discovery, vol. 2, no. 7, pp. 517–526, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. P. T. Kovanen, D. W. Bilheimer, and J. L. Goldstein, “Regulatory role for hepatic low density lipoprotein receptors in vivo in the dog,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 2, pp. 1194–1198, 1981. View at Scopus
  3. J. L. Goldstein and M. S. Brown, “Regulation of the mevalonate pathway,” Nature, vol. 343, no. 6257, pp. 425–430, 1990. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. P. Ma, G. Gil, T. C. Sudhof, D. Bilheimer, J. Goldstein, and M. Brown, “Mevinolin, an inhibitor of cholesterol synthesis, induces mRNA for low density lipoprotein receptor in livers of hamsters and rabbits,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 21, pp. 8370–8374, 1986.
  5. S. I. McFarlane, R. Muniyappa, R. Francisco, and J. R. Sowers, “Clinical review 145: pleiotropic effects of statins: lipid reduction and beyond,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 4, pp. 1451–1458, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. D. E. Wilmington, “Crestor [package insert],” AstraZeneca, 2003.
  7. H. B. Brewer, “Benefit-risk assessment of Rosuvastatin 10 to 40 milligrams,” The American Journal of Cardiology, vol. 92, pp. K23–K29, 2003. View at Scopus
  8. D. G. Vidt, M. D. Cressman, S. Harris, J. S. Pears, and H. G. Hutchinson, “Rosuvastatin-induced arrest in progression of renal disease,” Cardiology, vol. 102, no. 1, pp. 52–60, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. A. Verhulst, P. C. D'Haese, and M. E. De Broe, “Inhibitors of HMG-CoA reductase reduce receptor-mediated endocytosis in human kidney proximal tubular cells,” Journal of the American Society of Nephrology, vol. 15, no. 9, pp. 2249–2257, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. J. E. Sidaway, R. G. Davidson, F. McTaggart et al., “IInhibitors of HMG-CoA reductase reduce receptor-mediated endocytosis in opossum kidney cells,” Journal of the American Society of Nephrology, vol. 15, no. 9, pp. 2257–2265, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. S. Ellis and H. Mellor, “Regulation of endocytic traffic by Rho family GTPases,” Trends in Cell Biology, vol. 10, no. 3, pp. 85–88, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Pizon, M. Desjardins, C. Bucci, R. G. Parton, and M. Zerial, “Association of Rap1a and Rap1b proteins with late endocytic/phagocytic compartments and Rap2a with the Golgi complex,” Journal of Cell Science, vol. 107, no. 6, pp. 1661–1670, 1994. View at Scopus
  13. J. S. Rodman and A. Wandinger-Ness, “Rab GTPases coordinate endocytosis,” Journal of Cell Science, vol. 113, no. 2, pp. 183–192, 2000. View at Scopus
  14. A. Tiwari, “An overview of statin-associated proteinuria,” Drug Discovery Today, vol. 11, no. 9-10, pp. 458–464, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. T. I. Kassimatis and P. A. Konstantinopoulos, “The role of statins in chronic kidney disease (CKD): friend or foe?” Pharmacology and Therapeutics, vol. 122, no. 3, pp. 312–323, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. K. Shepherd, D. G. Vidt, E. Miller, S. Harris, and J. Blasetto, “Safety of rosuvastatin: update on 16,876 rosuvastatin-treated patients in a multinational clinical trial program,” Cardiology, vol. 107, no. 4, pp. 433–443, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. J. M. McKenney, M. H. Davidson, T. A. Jacobson, and J. R. Guyton, “Final conclusions and recommendations of the national lipid association statin safety assessment task force,” American Journal of Cardiology, vol. 97, no. 8, pp. S89–S94, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. M. S. Kostapanos, H. J. Milionis, V. G. Saougos et al., “Dose-dependent effect of rosuvastatin treatment on urinary protein excretion,” Journal of Cardiovascular Pharmacology and Therapeutics, vol. 12, no. 4, pp. 292–297, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. M. Abbate, C. Zoja, D. Corna, M. Capitanio, T. Bertani, and G. Remuzzi, “In progressive nephropathies, overload of tubular cells with filtered proteins translates glomerular permeability dysfunction into cellular signals of interstitial inflammation,” Journal of the American Society of Nephrology, vol. 9, no. 7, pp. 1213–1224, 1998. View at Scopus
  20. M. Abbate, C. Zoja, D. Rottoli et al., “Antiproteinuric therapy while preventing the abnormal protein traffic in proximal tubule abrogates protein- and complement-dependent interstitial inflammation in experimental renal disease,” Journal of the American Society of Nephrology, vol. 10, no. 4, pp. 804–813, 1999. View at Scopus
  21. R. Donadelli, C. Zanchi, M. Morigi et al., “Protein overload induces fractalkine upregulation in proximal tubular cells through nuclear factor kB- and p38 mitogen-activated protein kinase-dependent pathways,” Journal of the American Society of Nephrology, vol. 14, no. 10, pp. 2436–2446, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Abbate, C. Zoja, and G. Remuzzi, “How does proteinuria cause progressive renal damage?” Journal of the American Society of Nephrology, vol. 17, no. 11, pp. 2974–2984, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. R. Chana, J. Sidaway, and N. Brunskill, “Statins but not thiazolidinediones attenuate album-mediated chemokine production ay proximal tubular cells independently of endocytosis,” American Journal of Nephrology, vol. 28, pp. 823–830, 2010.
  24. J. A. Farmer, “Pleiotropic effects of statins,” Current Atherosclerosis Reports, vol. 2, no. 3, pp. 208–217, 2000. View at Scopus
  25. Z. A. Massy and C. Guijarro, “Statins: effects beyond cholesterol lowering,” Nephrology Dialysis Transplantation, vol. 16, no. 9, pp. 1738–1741, 2001. View at Scopus
  26. M. Katayama, M. Kawata, Y. Yoshida et al., “The posttranslationally modified C-terminal structure of bovine aortic smooth muscle rhoA p21,” Journal of Biological Chemistry, vol. 266, no. 19, pp. 12639–12645, 1991. View at Scopus
  27. N. Mitin, A. J. Kudla, S. F. Konieczny, and E. J. Taparowsky, “Differential effects of Ras signaling through NFkB on skeletal myogenesis,” Oncogene, vol. 20, no. 11, pp. 1276–1286, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus