About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 492075, 9 pages
http://dx.doi.org/10.1155/2011/492075
Research Article

Localization of Magic-F1 Transgene, Involved in Muscular Hypertrophy, during Early Myogenesis

1Human Anatomy Section, University of Pavia, Via Forlanini 8, 27100 Pavia, Italy
2Center for Tissue Engineering (CIT), University of Pavia, 27100 Pavia, Italy
3Translational Cardiomyology (SCIL), Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium
4Institute of Molecular Genetics, CNR, 27100 Pavia, Italy
5Stem Cell Research Institute, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium

Received 31 May 2011; Revised 14 September 2011; Accepted 19 September 2011

Academic Editor: Aikaterini Kontrogianni-Konstantopoulos

Copyright © 2011 Flavio Ronzoni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Clop, F. Marcq, H. Takeda et al., “A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep,” Nature Genetics, vol. 38, no. 7, pp. 813–818, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. S. J. Lee and A. C. McPherron, “Regulation of myostatin activity and muscle growth,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 16, pp. 9306–9311, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. A. C. McPherron and S. J. Lee, “Double muscling in cattle due to mutations in the myostatin gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 23, pp. 12457–12461, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Schuelke, K. R. Wagner, L. E. Stolz et al., “Myostatin mutation associated with gross muscle hypertrophy in a child,” The New England Journal of Medicine, vol. 350, no. 26, pp. 2682–2688, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. C. McFarlane, E. Plummer, M. Thomas et al., “Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-κB-independent, FoxO1-dependent mechanism,” Journal of Cellular Physiology, vol. 209, no. 2, pp. 501–514, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. D. L. Allen and T. G. Unterman, “Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors,” American Journal of Physiology, vol. 292, no. 1, pp. C188–C199, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. L. Trusolino and P. M. Comoglio, “Scatter-factor and semaphorin receptors: cell signalling for invasive growth,” Nature Reviews Cancer, vol. 2, no. 4, pp. 289–300, 2002. View at Scopus
  8. L. Tamagnone and P. M. Comoglio, “Control of invasive growth by hepatocyte growth factor (HGF) and related scatter factors,” Cytokine and Growth Factor Reviews, vol. 8, no. 2, pp. 129–142, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Zarnegar and G. K. Michalopoulos, “The many faces of hepatocyte growth factor: from hepatopoiesis to hematopoiesis,” The Journal of Cell Biology, vol. 129, no. 5, pp. 1177–1180, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. A. S. Woolf, M. Kolatsi-Joannou, P. Hardman et al., “Roles of hepatocyte growth factor/scatter factor and the met receptor in the early development of the metanephros,” The Journal of Cell Biology, vol. 128, no. 1-2, pp. 171–184, 1995. View at Scopus
  11. H. Takayama, W. J. La Rochelle, M. Anver, D. E. Bockman, and G. Merlino, “Scatter factor/hepatocyte growth factor as a regulator of skeletal muscle and neural crest development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 12, pp. 5866–5871, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Andermarcher, M. A. Surani, and E. Gherardi, “Co-expression of the HGF/SF and c-met genes during early mouse embryogenesis precedes reciprocal expression in adjacent tissues during organogenesis,” Developmental Genetics, vol. 18, no. 3, pp. 254–266, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Maina, M. C. Hilton, C. Ponzetto, A. M. Davies, and R. Klein, “Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons,” Genes & Development, vol. 11, no. 24, pp. 3341–3350, 1997. View at Scopus
  14. L. Kos, A. Aronzon, H. Takayama et al., “Hepatocyte growth factor/scatter factor-MET signaling in neural crest-derived melanocyte development,” Pigment Cell Research, vol. 12, no. 1, pp. 13–21, 1999.
  15. S. Dietrich, F. Abou-Rebyeh, H. Brohmann et al., “The role of SF/HGF and c-Met in the development of skeletal muscle,” Development, vol. 126, no. 8, pp. 1621–1629, 1999. View at Scopus
  16. C. Schmidt, F. Bladt, S. Goedecke et al., “Scatter factor/hepatocyte growth factor is essential for liver development,” Nature, vol. 373, no. 6516, pp. 699–702, 1995. View at Scopus
  17. Y. Uehara, O. Minowa, C. Mori et al., “Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor,” Nature, vol. 373, no. 6516, pp. 702–705, 1995. View at Scopus
  18. F. Bladt, D. Riethmacher, S. Isenmann, A. Aguzzi, and C. Birchmeier, “Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud,” Nature, vol. 376, no. 6543, pp. 768–771, 1995. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. S. M. Sheehan, R. Tatsumi, C. J. Temm-Grove, and R. E. Allen, “HGF is an autocrine growth factor for skeletal muscle satellite cells in vitro,” Muscle and Nerve, vol. 23, no. 2, pp. 239–245, 2000. View at Scopus
  20. K. J. Miller, D. Thaloor, S. Matteson, and G. K. Pavlath, “Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle,” American Journal of Physiology, vol. 278, no. 1, pp. C174–C181, 2000. View at Scopus
  21. R. Tatsumi, J. E. Anderson, C. J. Nevoret, O. Halevy, and R. E. Allen, “HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells,” Developmental Biology, vol. 194, no. 1, pp. 114–128, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. Y. Leshem, D. B. Spicer, R. Gal-Levi, and O. Halevy, “Hepatocyte growth factor (HGF) inhibits skeletal muscle cell differentiation: a role for the bHLH protein Twist and the cdk inhibitor p27,” Journal of Cellular Physiology, vol. 184, no. 1, pp. 101–109, 2000. View at Scopus
  23. S. Anastasi, S. Giordano, O. Sthandier et al., “A natural hepatocyte growth factor/scatter factor autocrine loop in myoblast cells and the effect of the constitutive met kinase activation on myogenic differentiation,” The Journal of Cell Biology, vol. 137, no. 5, pp. 1057–1068, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Gal-Levi, Y. Leshem, S. Aoki, T. Nakamura, and O. Halevy, “Hepatocyte growth factor plays a dual role in regulating skeletal muscle satellite cell proliferation and differentiation,” Biochimica et Biophysica Acta, vol. 1402, no. 1, pp. 39–51, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Cassano, S. Biressi, A. Finan et al., “Magic-factor 1, a partial agonist of Met, induces muscle hypertrophy by protecting myogenic progenitors from apoptosis,” Plos One, vol. 3, no. 9, Article ID e3223, 2008. View at Publisher · View at Google Scholar · View at PubMed
  26. D. Henrique, J. Adam, A. Myat, et al., “Expression of a Delta homologuein prospective neurons in the chick,” Nature, vol. 375, no. 6534, pp. 787–790, 1995. View at Publisher · View at Google Scholar · View at PubMed
  27. T. Sato, D. Rocancourt, L. Marques, S. Thorsteinsdóttir, and M. Buckingham, “A Pax3/Dmrt2/Myf5 regulatory cascade functions at the onset of myogenesis,” Plos Genetics, vol. 6, no. 4, Article ID e1000897, 2010. View at Publisher · View at Google Scholar · View at PubMed
  28. M. Lagha, J. D. Kormish, D. Rocancourt et al., “Pax3 regulation of FGF signaling affects the progression of embryonic progenitor cells into the myogenic program,” Genes & Development, vol. 22, no. 13, pp. 1828–1837, 2008. View at Publisher · View at Google Scholar · View at PubMed