About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 497841, 13 pages
http://dx.doi.org/10.1155/2011/497841
Review Article

Animal Models of Cardiovascular Diseases

1Department of Epidemiology, Atherothrombosis and Cardiovascular Imaging, Fundacion Centro Nacional Investigaciones Cardiovasculares Carlos III (CNIC), Sinesio Delgado 3, 28029 Madrid, Spain
2Renal and Vascular Research Laboratory, IIS-Fundacion Jimenez Diaz, Universidad Autonoma, Avda Reyes Catolicos 2, 28040 Madrid, Spain

Received 11 October 2010; Revised 4 January 2011; Accepted 17 January 2011

Academic Editor: Oreste Gualillo

Copyright © 2011 Carlos Zaragoza et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. S. Getz and C. A. Reardon, “Diet and murine atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 2, pp. 242–249, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. K. S. Meir and E. Leitersdorf, “Atherosclerosis in the apolipoprotein E-deficient mouse: a decade of progress,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 6, pp. 1006–1014, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. S. C. Whitman, “A practical approach to using mice in atherosclerosis research,” The Clinical Biochemist Reviews, vol. 25, pp. 81–93, 2004.
  4. S. Zadelaar, R. Kleemann, L. Verschuren et al., “Mouse models for atherosclerosis and pharmaceutical modifiers,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 8, pp. 1706–1721, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. S. Ishibashi, M. S. Brown, J. L. Goldstein, R. D. Gerard, R. E. Hammer, and J. Herz, “Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery,” Journal of Clinical Investigation, vol. 92, no. 2, pp. 883–893, 1993. View at Scopus
  6. J. F. Bentzon and E. Falk, “Atherosclerotic lesions in mouse and man: is it the same disease?” Current Opinion in Lipidology, vol. 21, no. 5, pp. 434–440, 2010. View at Publisher · View at Google Scholar · View at PubMed
  7. J. W. Knowles and N. Maeda, “Genetic modifiers of atherosclerosis in mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 11, pp. 2336–2345, 2000. View at Scopus
  8. L. Powell-Braxton, M. Véniant, R. D. Latvala et al., “A mouse model of human familial hypercholesterolemia: markedly elevated low density lipoprotein cholesterol levels and severe atherosclerosis on a low-fat chow diet,” Nature Medicine, vol. 4, no. 8, pp. 934–938, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. M. M. Véniant, C. H. Zlot, R. L. Walzem et al., “Lipoprotein clearance mechanisms in LDL receptor-deficient “Apo-B48- only” and “Apo-B100-only” mice,” Journal of Clinical Investigation, vol. 102, no. 8, pp. 1559–1568, 1998. View at Scopus
  10. A. H. Hasty, H. Shimano, J. I. Osuga et al., “Severe hypercholesterolemia, hypertriglyceridemia, and atherosclerosis in mice lacking both leptin and the low density lipoprotein receptor,” Journal of Biological Chemistry, vol. 276, no. 40, pp. 37402–37408, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. D. A. Sanan, D. L. Newland, R. Tao et al., “Low density lipoprotein receptor-negative mice expressing human apolipoprotein B-100 develop complex atherosclerotic lesions on a chow diet: no accentuation by apolipoprotein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 8, pp. 4544–4549, 1998. View at Scopus
  12. S. Bonthu, D. D. Heistad, D. A. Chappell, K. G. Lamping, and F. M. Faraci, “Atherosclerosis, vascular remodeling, and impairment of endothelium- dependent relaxation in genetically altered hyperlipidemic mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 17, no. 11, pp. 2333–2340, 1997. View at Scopus
  13. J. Jawień, P. Nastałek, and R. Korbut, “Mouse models of experimental atherosclerosis,” Journal of Physiology and Pharmacology, vol. 55, no. 3, pp. 503–517, 2004. View at Scopus
  14. Z. Chen, T. Fukutomi, A. C. Zago et al., “Simvastatin reduces neointimal thickening in low-density lipoprotein receptor-deficient mice after experimental angioplasty without changing plasma lipids,” Circulation, vol. 106, no. 1, pp. 20–23, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. A. C. Li, K. K. Brown, M. J. Silvestre, T. M. Willson, W. Palinski, and C. K. Glass, “Peroxisome proliferator-activated receptor γ ligands inhibit development of atherosclerosis in LDL receptor-deficient mice,” Journal of Clinical Investigation, vol. 106, no. 4, pp. 523–531, 2000. View at Scopus
  16. N. Terasaka, A. Hiroshima, T. Koieyama et al., “T-0901317, a synthetic liver X receptor ligand, inhibits development of atherosclerosis in LDL receptor-deficient mice,” FEBS Letters, vol. 536, no. 1–3, pp. 6–11, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. S. H. Zhang, R. L. Reddick, J. A. Piedrahita, and N. Maeda, “Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E,” Science, vol. 258, no. 5081, pp. 468–471, 1992. View at Scopus
  18. A. S. Plump, J. D. Smith, T. Hayek et al., “Severe hypercholesterolemia and atherosclerosis in apolipoprotein E- deficient mice created by homologous recombination in ES cells,” Cell, vol. 71, no. 2, pp. 343–353, 1992. View at Publisher · View at Google Scholar · View at Scopus
  19. S. H. Zhang, R. L. Reddick, B. Burkey, and N. Maeda, “Diet-induced atherosclerosis in mice heterozygous and homozygous for apolipoprotein E gene disruption,” Journal of Clinical Investigation, vol. 94, no. 3, pp. 937–945, 1994. View at Scopus
  20. Y. Nakashima, A. S. Plump, E. W. Raines, J. L. Breslow, and R. Ross, “ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree,” Arteriosclerosis and Thrombosis, vol. 14, no. 1, pp. 133–140, 1994. View at Scopus
  21. W. Hu, P. Polinsky, E. Sadoun, M. E. Rosenfeld, and S. M. Schwartz, “Atherosclerotic lesions in the common coronary arteries of ApoE knockout mice,” Cardiovascular Pathology, vol. 14, no. 3, pp. 120–125, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. R. L. Reddick, S. H. Zhang, and N. Maeda, “Atherosclerosis in mice lacking apo E: evaluation of lesional development and progression,” Arteriosclerosis and Thrombosis, vol. 14, no. 1, pp. 141–147, 1994. View at Scopus
  23. Y. X. Wang, B. Martin-McNulty, L. Y. Huw et al., “Anti-atherosclerotic effect of simvastatin depends on the presence of apolipoprotein E,” Atherosclerosis, vol. 162, no. 1, pp. 23–31, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Johnson, K. Carson, H. Williams et al., “Plaque rupture after short periods of fat feeding in the apolipoprotein E-knockout mouse: model characterization and effects of pravastatin treatment,” Circulation, vol. 111, no. 11, pp. 1422–1430, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. J. Grönros, J. Wikström, U. Brandt-Eliasson et al., “Effects of rosuvastatin on cardiovascular morphology and function in an ApoE-knockout mouse model of atherosclerosis,” American Journal of Physiology, vol. 295, no. 5, pp. H2046–H2053, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. Z. Chen, S. Ishibashi, S. Perrey et al., “Troglitazone inhibits atherosclerosis in apolipoprotein E-knockout mice: pleiotropic effects on CD36 expression and HDL,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 3, pp. 372–377, 2001. View at Scopus
  27. A. C. Calkin, T. J. Allen, M. Lassila, C. Tikellis, K. A. Jandeleit-Dahm, and M. C. Thomas, “Increased atherosclerosis following treatment with a dual PPAR agonist in the ApoE knockout mouse,” Atherosclerosis, vol. 195, no. 1, pp. 17–22, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. B. Trigatti, H. Rayburn, M. Viñals et al., “Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 16, pp. 9322–9327, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Yesilaltay, K. Daniels, R. Pal, M. Krieger, and O. Kocher, “Loss of PDZK1 causes coronary artery occlusion and myocardial infarction in Paigen diet-fed apolipoprotein E deficient mice,” PloS one, vol. 4, no. 12, Article ID e8103, 2009. View at Scopus
  30. M. H. Hofker, B. J. M. Van Vlijmen, and L. M. Havekes, “Transgenic mouse models to study the role of APOE in hyperlipidemia and atherosclerosis,” Atherosclerosis, vol. 137, no. 1, pp. 1–11, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Leppänen, J. S. Luoma, M. H. Hofker, L. M. Havekes, and S. Ylä-Herttuala, “Characterization of atherosclerotic lesions in apo E3-leiden transgenic mice,” Atherosclerosis, vol. 136, no. 1, pp. 147–152, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. J. W. A. Van Der Hoorn, J. W. Jukema, L. M. Havekes et al., “The dual PPARα/γ agonist tesaglitazar blocks progression of pre-existing atherosclerosis in APOE3Leiden.CETP transgenic mice,” British Journal of Pharmacology, vol. 156, no. 7, pp. 1067–1075, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. P. Reaven, S. Merat, F. Casanada, M. Sutphin, and W. Palinski, “Effect of streptozotocin-induced hyperglycemia on lipid profiles, formation of advanced glycation endproducts in lesions, and extent of atherosclerosis in LDL receptor-deficient mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 17, no. 10, pp. 2250–2256, 1997. View at Scopus
  34. X. Shen and K. E. Bornfeldt, “Mouse models for studies of cardiovascular complications of type 1 diabetes,” Annals of the New York Academy of Sciences, vol. 1103, pp. 202–217, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. T. Hayek, K. Hussein, M. Aviram et al., “Macrophage-foam cell formation in streptozotocin-induced diabetic mice: stimulatory effect of glucose,” Atherosclerosis, vol. 183, no. 1, pp. 25–33, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. D. B. Weinreb, J. G. S. Aguinaldo, J. E. Feig, E. A. Fisher, and Z. A. Fayad, “Non-invasive MRI of mouse models of atherosclerosis,” NMR in Biomedicine, vol. 20, no. 3, pp. 256–264, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. M. Aikawa, S. Sugiyama, C. C. Hill et al., “Lipid lowering reduces oxidative stress and endothelial cell activation in rabbit atheroma,” Circulation, vol. 106, no. 11, pp. 1390–1396, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Bustos, M. A. Hernández-Presa, M. Ortego et al., “HMG-CoA reductase inhibition by atorvastatin reduces neointimal inflammation in a rabbit model of atherosclerosis,” Journal of the American College of Cardiology, vol. 32, no. 7, pp. 2057–2064, 1998. View at Publisher · View at Google Scholar
  39. R. Largo, O. Sánchez-Pernaute, M. E. Marcos et al., “Chronic arthritis aggravates vascular lesions in rabbits with atherosclerosis: a novel model of atherosclerosis associated with chronic inflammation,” Arthritis and Rheumatism, vol. 58, no. 9, pp. 2723–2734, 2008. View at Publisher · View at Google Scholar · View at PubMed
  40. T. Shimizu, K. Nakai, Y. Morimoto et al., “Simple rabbit model of vulnerable atherosclerotic plaque,” Neurologia Medico-Chirurgica, vol. 49, no. 8, pp. 327–332, 2009. View at Publisher · View at Google Scholar
  41. G. Helft, S. G. Worthley, V. Fuster et al., “Atherosclerotic aortic component quantification by noninvasive magnetic resonance imaging: an in vivo study in rabbits,” Journal of the American College of Cardiology, vol. 37, no. 4, pp. 1149–1154, 2001. View at Publisher · View at Google Scholar
  42. R. G. Gerrity, R. Natarajan, J. L. Nadler, and T. Kimsey, “Diabetes-induced accelerated atherosclerosis in swine,” Diabetes, vol. 50, no. 7, pp. 1654–1665, 2001.
  43. R. L. Wilensky, Y. I. Shi, E. R. Mohler et al., “Inhibition of lipoprotein-associated phospholipase A reduces complex coronary atherosclerotic plaque development,” Nature Medicine, vol. 14, no. 10, pp. 1059–1066, 2008. View at Publisher · View at Google Scholar · View at PubMed
  44. J. F. Granada, G. L. Kaluza, R. L. Wilensky, B. C. Biedermann, R. S. Schwartz, and E. Falk, “Porcine models of coronary atherosclerosis and vulnerable plaque for imaging and interventional research,” EuroIntervention, vol. 5, no. 1, pp. 140–148, 2009.
  45. N. Hamada, M. Miyata, H. Eto et al., “Tacrolimus-eluting stent inhibits neointimal hyperplasia via calcineurin/NFAT signaling in porcine coronary artery model,” Atherosclerosis, vol. 208, no. 1, pp. 97–103, 2010. View at Publisher · View at Google Scholar · View at PubMed
  46. C. L. Alviar, A. Tellez, D. Wallace-Bradley et al., “Impact of adventitial neovascularisation on atherosclerotic plaque composition and vascular remodelling in a porcine model of coronary atherosclerosis,” EuroIntervention, vol. 5, no. 8, pp. 981–988, 2010.
  47. P. B. Dobrin, “Basic science: animal models of aneurysms,” Annals of Vascular Surgery, vol. 13, no. 6, pp. 641–648, 1999. View at Publisher · View at Google Scholar
  48. T. W. G. Carrell, A. Smith, and K. G. Burnand, “Experimental techniques and models in the study of the development and treatment of abdominal aortic aneurysm,” British Journal of Surgery, vol. 86, no. 3, pp. 305–312, 1999. View at Publisher · View at Google Scholar · View at PubMed
  49. R. W. Thompson, P. J. Geraghty, and J. K. Lee, “Abdominal aortic aneurysms: basic mechanisms and clinical implications,” Current Problems in Surgery, vol. 39, no. 2, pp. 110–230, 2002. View at Publisher · View at Google Scholar
  50. A. Daugherty and L. A. Cassis, “Mouse models of abdominal aortic aneurysms,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 3, pp. 429–434, 2004. View at Publisher · View at Google Scholar · View at PubMed
  51. R. A. Chaer, B. G. DeRubertis, R. Hynecek, K. C. Kent, and P. L. Faries, “Models of abdominal aortic aneurysm: characterization and clinical applications,” Vascular, vol. 14, no. 6, pp. 343–352, 2006. View at Publisher · View at Google Scholar
  52. S. Annambhotla, S. Bourgeois, X. Wang, P. H. Lin, Q. Yao, and C. Chen, “Recent advances in molecular mechanisms of abdominal aortic aneurysm formation,” World Journal of Surgery, vol. 32, no. 6, pp. 976–986, 2008. View at Publisher · View at Google Scholar · View at PubMed
  53. K. I. Paraskevas, D. P. Mikhailidis, and D. Perrea, “Experimental models of abdominal aortic aneurysms: an overview,” Current Pharmaceutical Design, vol. 14, no. 4, pp. 325–337, 2008. View at Publisher · View at Google Scholar
  54. S. Anidjar, J. L. Salzmann, D. Gentric, P. Lagneau, J. P. Camilleri, and J. B. Michel, “Elastase-induced experimental aneurysms in rats,” Circulation, vol. 82, no. 3, pp. 973–981, 1990.
  55. S. Anidjar, P. B. Dobrin, M. Eichorst, G. P. Graham, and G. Chejfec, “Correlation of inflammatory infiltrate with the enlargement of experimental aortic aneurysms,” Journal of Vascular Surgery, vol. 16, no. 2, pp. 139–147, 1992.
  56. T. Freestone, R. J. Turner, D. J. Higman, M. J. Lever, and J. T. Powell, “Influence of hypercholesterolemia and adventitial inflammation on the development of aortic aneurysm in rabbits,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 17, no. 1, pp. 10–17, 1997.
  57. R. Pyo, J. K. Lee, J. M. Shipley et al., “Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms,” Journal of Clinical Investigation, vol. 105, no. 11, pp. 1641–1649, 2000.
  58. E. Allaire, C. Guettier, P. Bruneval, D. Plissonnier, and J. B. Michel, “Cell-free arterial grafts: morphologic characteristics of aortic isografts, allografts, and xenografts in rats,” Journal of Vascular Surgery, vol. 19, no. 3, pp. 446–456, 1994.
  59. C. M. Brophy, J. E. Tilson, I. M. Braverman, and M. D. Tilson, “Age of onset, pattern of distribution, and histology of aneurysm development in a genetically predisposed mouse model,” Journal of Vascular Surgery, vol. 8, no. 1, pp. 45–48, 1988. View at Publisher · View at Google Scholar
  60. M. Matsushita, H. Kobayashi, K. Oda, N. Nishikimi, T. Sakurai, and Y. Nimura, “A rabbit model of abdominal aortic aneurysm associated with intimal thickening,” European Surgical Research, vol. 31, no. 4, pp. 305–313, 1999. View at Publisher · View at Google Scholar
  61. N. H. Fujiwara, H. J. Cloft, W. F. Marx, J. G. Short, M. E. Jensen, and D. F. Kallmes, “Serial angiography in an elastase-induced aneurysm model in rabbits: evidence for progressive aneurysm enlargement after creation,” American Journal of Neuroradiology, vol. 22, no. 4, pp. 698–703, 2001.
  62. S. D. Gertz, A. Kurgan, and D. Eisenberg, “Aneurysm of the rabbit common carotid artery induced by periarterial application of calcium chloride in vivo,” Journal of Clinical Investigation, vol. 81, no. 3, pp. 649–656, 1988.
  63. J. Moláček, V. Třeška, J. Kobr et al., “Optimization of the model of abdominal aortic aneurysm—experiment in an animal model,” Journal of Vascular Research, vol. 46, no. 1, pp. 1–5, 2008. View at Publisher · View at Google Scholar · View at PubMed
  64. E. Allaire, R. Forough, M. Clowes, B. Starcher, and A. W. Clowes, “Local overexpression of TIMP-1 prevents aortic aneurysm degeneration and rupture in a rat model,” Journal of Clinical Investigation, vol. 102, no. 7, pp. 1413–1420, 1998.
  65. E. Allaire, D. Hasenstab, R. D. Kenagy, B. Starcher, M. M. Clowes, and A. W. Clowes, “Prevention of aneurysm development and rupture by local overexpression of plasminogen activator inhibitor-1,” Circulation, vol. 98, no. 3, pp. 249–255, 1998.
  66. E. Allaire, B. Muscatelli-Groux, C. Mandet et al., “Paracrine effect of vascular smooth muscle cells in the prevention of aortic aneurysm formation,” Journal of Vascular Surgery, vol. 36, no. 5, pp. 1018–1026, 2002. View at Publisher · View at Google Scholar
  67. L. Sarda-Mantel, M. Coutard, F. Rouzet et al., “Tc-annexin-V functional imaging of luminal thrombus activity in abdominal aortic aneurysms,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 9, pp. 2153–2159, 2006. View at Publisher · View at Google Scholar · View at PubMed
  68. Z. Touat, V. Ollivier, J. Dai et al., “Renewal of mural thrombus releases plasma markers and is involved in aortic abdominal aneurysm evolution,” American Journal of Pathology, vol. 168, no. 3, pp. 1022–1030, 2006. View at Publisher · View at Google Scholar · View at PubMed
  69. J. Dai, L. Louedec, M. Philippe, J. B. Michel, and X. Houard, “Effect of blocking platelet activation with AZD6140 on development of abdominal aortic aneurysm in a rat aneurysmal model,” Journal of Vascular Surgery, vol. 49, no. 3, pp. 719–727, 2009. View at Publisher · View at Google Scholar · View at PubMed
  70. T. R. Lizarbe, C. Tarín, M. Gómez et al., “Nitric oxide induces the progression of abdominal aortic aneurysms through the matrix metalloproteinase inducer EMMPRIN,” American Journal of Pathology, vol. 175, no. 4, pp. 1421–1430, 2009. View at Publisher · View at Google Scholar · View at PubMed
  71. R. W. Thompson, J. A. Curci, T. L. Ennis, D. Mao, M. B. Pagano, and C. T. N. Pham, “Pathophysiology of abdominal aortic aneurysms: insights from the elastase-induced model in mice with different genetic backgrounds,” Annals of the New York Academy of Sciences, vol. 1085, pp. 59–73, 2006. View at Publisher · View at Google Scholar · View at PubMed
  72. J. K. Lee, M. Borhani, T. L. Ennis, G. R. Upchurch, and R. W. Thompson, “Experimental abdominal aortic aneurysms in mice lacking expression of inducible nitric oxide synthase,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 9, pp. 1393–1401, 2001.
  73. E. Sho, M. Sho, H. Nanjo, K. Kawamura, H. Masuda, and R. L. Dalman, “Hemodynamic regulation of CD34 cell localization and differentiation in experimental aneurysms,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 10, pp. 1916–1921, 2004. View at Publisher · View at Google Scholar · View at PubMed
  74. J. L. Eliason, K. K. Hannawa, G. Ailawadi et al., “Neutrophil depletion inhibits experimental abdominal aortic aneurysm formation,” Circulation, vol. 112, no. 2, pp. 232–240, 2005. View at Publisher · View at Google Scholar · View at PubMed
  75. F. E. Parodi, D. Mao, T. L. Ennis, M. A. Bartoli, and R. W. Thompson, “Suppression of experimental abdominal aortic aneurysms in mice by treatment with pyrrolidine dithiocarbamate, an antioxidant inhibitor of nuclear factor-κB,” Journal of Vascular Surgery, vol. 41, no. 3, pp. 479–489, 2005. View at Publisher · View at Google Scholar · View at PubMed
  76. E. F. Steinmetz, C. Buckley, M. L. Shames et al., “Treatment with simvastatin suppresses the development of experimental abdominal aortic aneurysms in normal and hypercholesterolemic mice,” Annals of Surgery, vol. 241, no. 1, pp. 92–101, 2005. View at Publisher · View at Google Scholar
  77. S. J. Van Vickle-Chavez, W. S. Tung, T. S. Absi et al., “Temporal changes in mouse aortic wall gene expression during the development of elastase-induced abdominal aortic aneurysms,” Journal of Vascular Surgery, vol. 43, no. 5, pp. 1010–1020, 2006. View at Publisher · View at Google Scholar · View at PubMed
  78. M. B. Pagano, M. A. Bartoli, T. L. Ennis et al., “Critical role of dipeptidyl peptidase I in neutrophil recruitment during the development of experimental abdominal aortic aneurysms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 8, pp. 2855–2860, 2007. View at Publisher · View at Google Scholar · View at PubMed
  79. J. Sun, G. K. Sukhova, M. Yang et al., “Mast cells modulate the pathogenesis of elastase-induced abdominal aortic aneurysms in mice,” Journal of Clinical Investigation, vol. 117, no. 11, pp. 3359–3368, 2007. View at Publisher · View at Google Scholar · View at PubMed
  80. M. B. Pagano, H. F. Zhou, T. L. Ennis et al., “Complement-dependent neutrophil recruitment is critical for the development of elastase-induced abdominal aortic aneurysm,” Circulation, vol. 119, no. 13, pp. 1805–1813, 2009. View at Publisher · View at Google Scholar · View at PubMed
  81. A. Daugherty, M. W. Manning, and L. A. Cassis, “Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice,” Journal of Clinical Investigation, vol. 105, no. 11, pp. 1605–1612, 2000.
  82. L. A. Cassis, D. L. Rateri, H. Lu, and A. Daugherty, “Bone marrow transplantation reveals that recipient AT1a receptors are required to initiate angiotensin II-induced atherosclerosis and aneurysms,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 2, pp. 380–386, 2007. View at Publisher · View at Google Scholar · View at PubMed
  83. D. M. Tham, B. Martin-McNulty, YI. X. Wang et al., “Angiotensin II is associated with activation of NF-κB-mediated genes and downregulation of PPARs,” Physiological Genomics, vol. 11, pp. 21–30, 2003.
  84. M. Thomas, D. Gavrila, M. L. McCormick et al., “Deletion of p47 attenuates angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E-deficient mice,” Circulation, vol. 114, no. 5, pp. 404–413, 2006. View at Publisher · View at Google Scholar · View at PubMed
  85. K. Yoshimura, H. Aoki, Y. Ikeda et al., “Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase,” Nature Medicine, vol. 11, no. 12, pp. 1330–1338, 2005. View at Publisher · View at Google Scholar · View at PubMed
  86. YI. X. Wang, B. Martin-McNulty, V. Da Cunha et al., “Fasudil, a Rho-kinase inhibitor, attenuates angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E-deficient mice by inhibiting apoptosis and proteolysis,” Circulation, vol. 111, no. 17, pp. 2219–2226, 2005. View at Publisher · View at Google Scholar · View at PubMed
  87. K. Saraff, F. Babamusta, L. A. Cassis, and A. Daugherty, “Aortic dissection precedes formation of aneurysms and atherosclerosis in angiotensin II-infused, apolipoprotein E-deficient mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 9, pp. 1621–1626, 2003. View at Publisher · View at Google Scholar · View at PubMed
  88. M. Ishibashi, K. Egashira, Q. Zhao et al., “Bone marrow-derived monocyte chemoattractant protein-1 receptor CCR2 is critical in angiotensin II-induced acceleration of atherosclerosis and aneurysm formation in hypercholesterolemic mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 11, pp. e174–178, 2004.
  89. M. W. Manning, L. A. Cassis, and A. Daugherty, “Differential effects of doxycycline, a broad-spectrum matrix metalloproteinase inhibitor, on angiotensin II-induced atherosclerosis and abdominal aortic aneurysms,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 3, pp. 483–488, 2003. View at Publisher · View at Google Scholar · View at PubMed
  90. G. G. Deng, B. Martin-McNulty, D. A. Sukovich et al., “Urokinase-type plasminogen activator plays a critical role in angiotensin II-induced abdominal aortic aneurysm,” Circulation Research, vol. 92, no. 5, pp. 510–517, 2003. View at Publisher · View at Google Scholar · View at PubMed
  91. J. O. Deguchi, H. Huang, P. Libby et al., “Genetically engineered resistance for MMP collagenases promotes abdominal aortic aneurysm formation in mice infused with angiotensin II,” Laboratory Investigation, vol. 89, no. 3, pp. 315–326, 2009. View at Publisher · View at Google Scholar · View at PubMed
  92. V. L. King, A. Y. Lin, F. Kristo et al., “Interferon-γ and the interferon-inducible chemokine CXCL10 protect against aneurysm formation and rupture,” Circulation, vol. 119, no. 3, pp. 426–435, 2009. View at Publisher · View at Google Scholar · View at PubMed
  93. G. Nickenig, O. Jung, K. Strehlow et al., “Hypercholesterolemia is associated with enhanced angiotensin AT-receptor expression,” American Journal of Physiology, vol. 272, no. 6, pp. H2701–H2707, 1997.
  94. L. A. Cassis, M. Gupte, S. Thayer et al., “ANG II infusion promotes abdominal aortic aneurysms independent of increased blood pressure in hypercholesterolemic mice,” American Journal of Physiology, vol. 296, no. 5, pp. H1660–H1665, 2009. View at Publisher · View at Google Scholar · View at PubMed
  95. D. Dai, Y. H. Ding, D. A. Lewis, and D. F. Kallmes, “A proposed ordinal scale for grading histology in elastase-induced, saccular aneurysms,” American Journal of Neuroradiology, vol. 27, no. 1, pp. 132–138, 2006. View at Scopus
  96. D. Dai, Y. H. Ding, M. A. Danielson et al., “Endovascular treatment of experimental aneurysms with use of fibroblast transfected with replication-deficient adenovirus containing bone morphogenetic protein-13 gene,” American Journal of Neuroradiology, vol. 29, no. 4, pp. 739–744, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. F. Ramirez and H. C. Dietz, “Marfan syndrome: from molecular pathogenesis to clinical treatment,” Current Opinion in Genetics and Development, vol. 17, no. 3, pp. 252–258, 2007. View at Publisher · View at Google Scholar · View at PubMed
  98. E. R. Neptune, P. A. Frischmeyer, D. E. Arking et al., “Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome,” Nature Genetics, vol. 33, no. 3, pp. 407–411, 2003. View at Publisher · View at Google Scholar · View at PubMed
  99. C. M. Ng, A. Cheng, L. A. Myers et al., “TGF-β-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome,” Journal of Clinical Investigation, vol. 114, no. 11, pp. 1586–1592, 2004. View at Publisher · View at Google Scholar
  100. J. P. Habashi, D. P. Judge, T. M. Holm et al., “Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome,” Science, vol. 312, no. 5770, pp. 117–121, 2006. View at Publisher · View at Google Scholar · View at PubMed
  101. L. Carta, S. Smaldone, L. Zilberberg et al., “p38 MAPK is an early determinant of promiscuous Smad2/3 signaling in the aortas of fibrillin-1 (Fbn1)-null mice,” Journal of Biological Chemistry, vol. 284, no. 9, pp. 5630–5636, 2009. View at Publisher · View at Google Scholar · View at PubMed
  102. B. S. Brooke, J. P. Habashi, D. P. Judge, N. Patel, B. Loeys, and H. C. Dietz, “Angiotensin II blockade and aortic-root dilation in marfan's syndrome,” New England Journal of Medicine, vol. 358, no. 26, pp. 2787–2795, 2008. View at Publisher · View at Google Scholar · View at PubMed
  103. P. Boucker, W.-P. Li, R. L. Matz et al., “LRP1 functions as an atheroprotective integrator of TGFβ and PDGF signals in the vascular wall: implications for Marfan syndrome,” PLoS ONE, vol. 2, no. 5, article e448, 2007. View at Publisher · View at Google Scholar · View at PubMed
  104. K. Hanada, M. Vermeij, G. A. Garinis et al., “Perturbations of vascular homeostasis and aortic valve abnormalities in fibulin-4 deficient mice,” Circulation Research, vol. 100, no. 5, pp. 738–746, 2007. View at Publisher · View at Google Scholar · View at PubMed
  105. M. A. Pfeffer, J. M. Pfeffer, and M. C. Fishbein, “Myocardial infarct size and ventricular function in rats,” Circulation Research, vol. 44, no. 4, pp. 503–512, 1979.
  106. G. Zbinden and R. E. Bagdon, “Isoproterenol-induced heart necrosis, an experimental model for the study of angina pectoris and myocardial infarct,” Reviews of Canadian Biology, vol. 22, pp. 257–263, 1963.
  107. N. Adler, L. L. Camin, and P. Shulkin, “Rat model for acute myocardial infarction: application to technetium labeled glucoheptonate, tetracycline, and polyphosphate,” Journal of Nuclear Medicine, vol. 17, no. 3, pp. 203–207, 1976. View at Scopus
  108. L. H. Michael, M. L. Entman, C. J. Hartley et al., “Myocardial ischemia and reperfusion: a murine model,” American Journal of Physiology, vol. 269, no. 6, pp. H2147–H2154, 1995.
  109. J. U. H. Ryu, I. L. K. Kim, S. W. Cho et al., “Implantation of bone marrow mononuclear cells using injectable fibrin matrix enhances neovascularization in infarcted myocardium,” Biomaterials, vol. 26, no. 3, pp. 319–326, 2005. View at Publisher · View at Google Scholar · View at PubMed
  110. H. A. Rockman, S. P. Wachhorst, L. Mao, and J. Ross, “ANG II receptor blockade prevents ventricular hypertrophy and ANF gene expression with pressure overload in mice,” American Journal of Physiology, vol. 266, no. 6, pp. H2468–H2475, 1994.
  111. M. Shimizu, R. Tanaka, T. Fukuyama, R. Aoki, K. Orito, and Y. Yamane, “Cardiac remodeling and angiotensin II-forming enzyme activity of the left ventricle in hamsters with chronic pressure overload induced by ascending aortic stenosis,” Journal of Veterinary Medical Science, vol. 68, no. 3, pp. 271–276, 2006. View at Publisher · View at Google Scholar
  112. H. Toko, H. Takahashi, Y. Kayama et al., “Ca2+/calmodulin-dependent kinase IIδ causes heart failure by accumulation of p53 in dilated cardiomyopathy,” Circulation, vol. 122, no. 9, pp. 891–899, 2010. View at Publisher · View at Google Scholar · View at PubMed
  113. M. Shiomi, S. Yamada, A. Matsukawa, H. Itabe, and T. Ito, “Invasion of atheromatous plaques into tunica media causes coronary outward remodeling in WHHLMI rabbits,” Atherosclerosis, vol. 198, no. 2, pp. 287–293, 2008. View at Publisher · View at Google Scholar · View at PubMed
  114. G. E. González, I. M. Seropian, M. L. Krieger et al., “Effect of early versus late AT receptor blockade with losartan on postmyocardial infarction ventricular remodeling in rabbits,” American Journal of Physiology, vol. 297, no. 1, pp. H375–H386, 2009. View at Publisher · View at Google Scholar · View at PubMed
  115. K. Takeuchi, F. X. McGowan Jr., P. Glynn et al., “Glucose transporter upregulation improves ischemic tolerance in hypertrophied failing heart,” Circulation, vol. 98, pp. II234–II239, 1998.
  116. D. Busseuil, Y. Shi, M. Mecteau et al., “Regression of aortic valve stenosis by ApoA-I mimetic peptide infusions in rabbits,” British Journal of Pharmacology, vol. 154, no. 4, pp. 765–773, 2008. View at Publisher · View at Google Scholar · View at PubMed
  117. S. J. Lavine, “Effect of changes in contractility on the index of myocardial performance in the dysfunctional left ventricle,” Cardiovascular Ultrasound, vol. 4, article 45, 2006. View at Publisher · View at Google Scholar · View at PubMed
  118. M. F. M. Van Oosterhout, T. Arts, A. M. M. Muijtjens, R. S. Reneman, and F. W. Prinzen, “Remodeling by ventricular pacing in hypertrophying dog hearts,” Cardiovascular Research, vol. 49, no. 4, pp. 771–778, 2001. View at Publisher · View at Google Scholar
  119. M. Koide, M. Hamawaki, T. Narishige et al., “Microtubule depolymerization normalizes in vivo myocardial contractile function in dogs with pressure-overload left ventricular hypertrophy,” Circulation, vol. 102, no. 9, pp. 1045–1052, 2000.
  120. Y. Suzuki, J. K. Lyons, A. C. Yeung, and F. Ikeno, “In vivo porcine model of reperfused myocardial infarction: in situ double staining to measure precise infarct area/area at risk,” Catheterization and Cardiovascular Interventions, vol. 71, no. 1, pp. 100–107, 2008. View at Publisher · View at Google Scholar · View at PubMed
  121. F. G. Spinale, M. L. Coker, C. V. Thomas, J. D. Walker, R. Mukherjee, and L. Hebbar, “Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure: relation to ventricular and myocyte function,” Circulation Research, vol. 82, no. 4, pp. 482–495, 1998.
  122. M. B. West, G. Rokosh, D. Obal et al., “Cardiac myocyte-specific expression of inducible nitric oxide synthase protects against ischemia/reperfusion injury by preventing mitochondrial permeability transition,” Circulation, vol. 118, no. 19, pp. 1970–1978, 2008. View at Publisher · View at Google Scholar · View at PubMed
  123. W. G. Kim, Y. C. Shin, S. W. Hwang, C. Lee, and C. Y. Na, “Comparison of myocardial infarction with sequential ligation of the left anterior descending artery and its diagonal branch in dogs and sheep,” International Journal of Artificial Organs, vol. 26, no. 4, pp. 351–357, 2003.
  124. M. Shiomi, T. Ito, S. Yamada, S. Kawashima, and J. Fan, “Development of an animal model for spontaneous myocardial infarction (WHHLMI rabbit),” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 7, pp. 1239–1244, 2003. View at Publisher · View at Google Scholar · View at PubMed
  125. Y. Kuge, N. Takai, Y. Ogawa et al., “Imaging with radiolabelled anti-membrane type 1 matrix metalloproteinase (MT1-MMP) antibody: potentials for characterizing atherosclerotic plaques,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 37, pp. 2093–2104, 2010. View at Publisher · View at Google Scholar · View at PubMed
  126. H. Schunkert, V. J. Dzau, S. S. Tang, A. T. Hirsch, C. S. Apstein, and B. H. Lorell, “Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation,” Journal of Clinical Investigation, vol. 86, no. 6, pp. 1913–1920, 1990.
  127. D. M. Eble, J. D. Walker, A. M. Samarel, and F. G. Spinale, “Myosin heavy chain synthesis during the progression of chronic tachycardia induced heart failure in rabbits,” Basic Research in Cardiology, vol. 93, no. 1, pp. 50–55, 1998. View at Publisher · View at Google Scholar