About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 514261, 17 pages
http://dx.doi.org/10.1155/2011/514261
Review Article

Therapeutic Strategies to Enhance the Anticancer Efficacy of Histone Deacetylase Inhibitors

1Department of Pediatrics Research, Children's Cancer Hospital, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
2The Center for Cancer Epigenetics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
3Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
4Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA

Received 11 August 2010; Accepted 11 March 2011

Academic Editor: Patrick Matthias

Copyright © 2011 Claudia P. Miller et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Hong, G. P. Schroth, H. R. Matthews, P. Yau, and E. M. Bradbury, “Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 'tail' to DNA,” Journal of Biological Chemistry, vol. 268, no. 1, pp. 305–314, 1993. View at Scopus
  2. V. G. Allfrey, R. Faulkner, and A. E. Mirsky, “Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis,” Proceedings of the National Academy of Sciences of the United States of, vol. 51, pp. 786–794, 1964.
  3. B. D. Strahl and C. D. Allis, “The language of covalent histone modifications,” Nature, vol. 403, no. 6765, pp. 41–45, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. L. Gao, M. A. Cueto, F. Asselbergs, and P. Atadja, “Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family,” Journal of Biological Chemistry, vol. 277, no. 28, pp. 25748–25755, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. S. I. Imai and L. Guarente, “Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases,” Trends in Pharmacological Sciences, vol. 31, no. 5, pp. 212–220, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. W. Gu and R. G. Roeder, “Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain,” Cell, vol. 90, no. 4, pp. 595–606, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. K. B. Glaser, J. Li, M. J. Staver, R. Q. Wei, D. H. Albert, and S. K. Davidsen, “Role of Class I and Class II histone deacetylases in carcinoma cells using siRNA,” Biochemical and Biophysical Research Communications, vol. 310, no. 2, pp. 529–536, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Atadja, L. Gao, P. Kwon et al., “Selective growth inhibition of tumor cells by a novel histone deacetylase inhibitor, NVP-LAQ824,” Cancer Research, vol. 64, no. 2, pp. 689–695, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. J. S. Ungerstedt, Y. Sowa, W. S. Xu et al., “Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 3, pp. 673–678, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. A. Nebbioso, N. Clarke, E. Voltz et al., “Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells,” Nature Medicine, vol. 11, no. 1, pp. 77–84, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. R. W. Johnstone, “Histone-deacetylase inhibitors: novel drugs for the treatment of cancer,” Nature Reviews Drug Discovery, vol. 1, no. 4, pp. 287–299, 2002. View at Scopus
  12. C. Friend, W. Scher, J. G. Holland, and T. Sato, “Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: stimulation of erythroid differentiation by dimethyl sulfoxide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 68, no. 2, pp. 378–382, 1971. View at Scopus
  13. M. Yoshida, M. Kijima, M. Akita, and T. Beppu, “Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A,” Journal of Biological Chemistry, vol. 265, no. 28, pp. 17174–17179, 1990. View at Scopus
  14. V. M. Richon, R. G. Ramsay, R. A. Rifkind, and P. A. Marks, “Modulation of the c-myb, c-myc and p53 mRNA and protein levels during induced murine erythroleukemia cell differentiation,” Oncogene, vol. 4, no. 2, pp. 165–173, 1989. View at Scopus
  15. V. M. Richon, S. Emiliani, E. Verdin et al., “A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 6, pp. 3003–3007, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. S. J. Haggarty, K. M. Koeller, J. C. Wong, C. M. Grozinger, and S. L. Schreiber, “Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 8, pp. 4389–4394, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. J. J. Buggy, Z. A. Cao, K. E. Bass et al., “CRA-024781: a novel synthetic inhibitor of histone deacetylase enzymes with antitumor activity in vitro and in vivo,” Molecular Cancer Therapeutics, vol. 5, no. 5, pp. 1309–1317, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. J. M. Mariadason, G. A. Corner, and L. H. Augenlicht, “Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer,” Cancer Research, vol. 60, no. 16, pp. 4561–4572, 2000. View at Scopus
  19. S. Minucci and P. G. Pelicci, “Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer,” Nature Reviews Cancer, vol. 6, no. 1, pp. 38–51, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. S. H. Kwon, S. H. Ahn, Y. K. Kim et al., “Apicidin, a histone deacetylase inhibitor, induces apoptosis and Fas/Fas ligand expression in human acute promyelocytic leukemia cells,” Journal of Biological Chemistry, vol. 277, no. 3, pp. 2073–2080, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. A. Insinga, S. Monestiroli, S. Ronzoni et al., “Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway,” Nature Medicine, vol. 11, no. 1, pp. 71–76, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. J. A. Vrana, R. H. Decker, C. R. Johnson et al., “Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid (SAHA) proceeds through pathways that are regulated by Bcl-2/Bcl-x(L), c-Jun, and p21(CIP1), but independent of p53,” Oncogene, vol. 18, no. 50, pp. 7016–7025, 1999. View at Scopus
  23. Y. Zhao, J. Tan, L. Zhuang, X. Jiang, E. T. Liu, and Q. Yu, “Inhibitors of histone deacetylases target the Rb-E2F1 pathway for apoptosis induction through activation of proapoptotic protein Bim,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 44, pp. 16090–16095, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. A. A. Ruefli, M. J. Ausserlechner, D. Bernhard et al., “The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 19, pp. 10833–10838, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. R. R. Rosato, J. A. Almenara, S. C. Maggio et al., “Role of histone deacetylase inhibitor-induced reactive oxygen species and DNA damage in LAQ-824/fludarabine antileukemic interactions,” Molecular Cancer Therapeutics, vol. 7, no. 10, pp. 3285–3297, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. S. Gao, A. Mobley, C. Miller, J. Boklan, and J. Chandra, “Potentiation of reactive oxygen species is a marker for synergistic cytotoxicity of MS-275 and 5-azacytidine in leukemic cells,” Leukemia Research, vol. 32, no. 5, pp. 771–780, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. R. R. Rosato, J. A. Almenara, and S. Grant, “The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21,” Cancer Research, vol. 63, no. 13, pp. 3637–3645, 2003. View at Scopus
  28. L. M. Butler, X. Zhou, W. S. Xu et al., “The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 18, pp. 11700–11705, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. D. T. Lincoln, E. M. Ali Emadi, K. F. Tonissen, and F. M. Clarke, “The thioredoxin-thioredoxin reductase system: over-expression in human cancer,” Anticancer Research, vol. 23, no. 3 B, pp. 2425–2433, 2003. View at Scopus
  30. L. E. Shao, M. B. Diccianni, T. Tanaka et al., “Thioredoxin expression in primary T-cell acute lymphoblastic leukemia and its therapeutic implication,” Cancer Research, vol. 61, no. 19, pp. 7333–7338, 2001. View at Scopus
  31. V. M. Richon, T. W. Sandhoff, R. A. Rifkind, and P. A. Marks, “Histone deacetylase inhibitor selectively induces p21 expressjon and gene-associated histone acetylation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 18, pp. 10014–10019, 2000. View at Scopus
  32. L. Qiu, A. Burgess, D. P. Fairlie, H. Leonard, P. G. Parsons, and B. G. Gabrielli, “Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells,” Molecular Biology of the Cell, vol. 11, no. 6, pp. 2069–2083, 2000. View at Scopus
  33. V. Sandor, A. Senderowicz, S. Mertins et al., “P21-dependent G arrest with downregulation of cyclin D1 and upregulation of cyclin E by the histone deacetylase inhibitor FR901228,” British Journal of Cancer, vol. 83, no. 6, pp. 817–825, 2000. View at Scopus
  34. D. Z. Qian, Y. Kato, S. Shabbeer et al., “Targeting tumor angiogenesis with histone deacetylase inhibitors: the hydroxamic acid derivative LBH589,” Clinical Cancer Research, vol. 12, no. 2, pp. 634–642, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. C. F. Deroanne, K. Bonjean, S. Servotte et al., “Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling,” Oncogene, vol. 21, no. 3, pp. 427–436, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Michaelis, U. R. Michaelis, I. Fleming et al., “Valproic acid inhibits angiogenesis in vitro and in vivo,” Molecular Pharmacology, vol. 65, no. 3, pp. 520–527, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. M. Duvic, R. Talpur, X. Ni et al., “Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL),” Blood, vol. 109, no. 1, pp. 31–39, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. S. C. Modesitt, M. Sill, J. S. Hoffman, and D. P. Bender, “A phase II study of vorinostat in the treatment of persistent or recurrent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group study,” Gynecologic Oncology, vol. 109, no. 2, pp. 182–186, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. J. Vansteenkiste, E. Van Cutsem, H. Dumez et al., “Early phase II trial of oral vorinostat in relapsed or refractory breast, colorectal, or non-small cell lung cancer,” Investigational New Drugs, vol. 26, no. 5, pp. 483–488, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. G. R. Blumenschein, M. S. Kies, V. A. Papadimitrakopoulou et al., “Phase II trial of the histone deacetylase inhibitor vorinostat (Zolinza, suberoylanilide hydroxamic acid, SAHA) in patients with recurrent and/or metastatic head and neck cancer,” Investigational New Drugs, vol. 26, no. 1, pp. 81–87, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. E. Galanis, K. A. Jaeckle, M. J. Maurer et al., “Phase II trial of Vorinostat in recurrent glioblastoma multiforme: a north central cancer treatment group study,” Journal of Clinical Oncology, vol. 27, no. 12, pp. 2052–2058, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. T. H. Luu, R. J. Morgan, L. Leong et al., “A phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a California cancer consortium study,” Clinical Cancer Research, vol. 14, no. 21, pp. 7138–7142, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. J. A. Woyach, R. T. Kloos, M. D. Ringel et al., “Lack of therapeutic effect of the histone deacetylase inhibitor vorinostat in patients with metastatic radioiodine-refractory thyroid carcinoma,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 1, pp. 164–170, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. X. Ma, H. H. Ezzeldin, and R. B. Diasio, “Histone deacetylase inhibitors: current status and overview of recent clinical trials,” Drugs, vol. 69, no. 14, pp. 1911–1934, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. I. Gojo, A. Jiemjit, J. B. Trepel et al., “Phase 1 and pharmacologic study of MS-275, a histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias,” Blood, vol. 109, no. 7, pp. 2781–2790, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. Q. C. Ryan, D. Headlee, M. Acharya et al., “Phase I and pharmacokinetic study of MS-275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma,” Journal of Clinical Oncology, vol. 23, no. 17, pp. 3912–3922, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. S. Kummar, M. Gutierrez, E. R. Gardner et al., “Phase I trial of MS-275, a histone deacetylase inhibitor, administered weekly in refractory solid tumors and lymphoid malignancies,” Clinical Cancer Research, vol. 13, no. 18, pp. 5411–5417, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. L. Gore, M. L. Rothenberg, C. L. O'Bryant et al., “A phase I and pharmacokinetic study of the oral histone deacetylase inhibitor, MS-275, in patients with refractory solid tumors and lymphomas,” Clinical Cancer Research, vol. 14, no. 14, pp. 4517–4525, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. O. A. O'Connor, M. L. Heaney, L. Schwartz et al., “Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies,” Journal of Clinical Oncology, vol. 24, no. 1, pp. 166–173, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. W. K. Kelly, O. A. O'Connor, L. M. Krug et al., “Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer,” Journal of Clinical Oncology, vol. 23, no. 17, pp. 3923–3931, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. C. Choudhary, C. Kumar, F. Gnad et al., “Lysine acetylation targets protein complexes and co-regulates major cellular functions,” Science, vol. 325, no. 5942, pp. 834–840, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. A. Bird, “DNA methylation patterns and epigenetic memory,” Genes and Development, vol. 16, no. 1, pp. 6–21, 2002. View at Publisher · View at Google Scholar · View at PubMed
  53. P. H. Tate and A. P. Bird, “Effects of DNA methylation on DNA-binding proteins and gene expression,” Current Opinion in Genetics and Development, vol. 3, no. 2, pp. 226–231, 1993. View at Publisher · View at Google Scholar
  54. R. R. Meehan, J. D. Lewis, S. McKay, E. L. Kleiner, and A. P. Bird, “Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs,” Cell, vol. 58, no. 3, pp. 499–507, 1989.
  55. B. Hendrich and A. Bird, “Identification and characterization of a family of mammalian methyl-CpG binding proteins,” Molecular and Cellular Biology, vol. 18, no. 11, pp. 6538–6547, 1998.
  56. P. L. Jones, G. J. C. Veenstra, P. A. Wade et al., “Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription,” Nature Genetics, vol. 19, no. 2, pp. 187–191, 1998. View at Publisher · View at Google Scholar · View at PubMed
  57. X. Nan, H. H. Ng, C. A. Johnson et al., “Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex,” Nature, vol. 393, no. 6683, pp. 386–389, 1998. View at Publisher · View at Google Scholar · View at PubMed
  58. A. Dobrovic and D. Simpfendorfer, “Methylation of the BRCA1 gene in sporadic breast cancer,” Cancer Research, vol. 57, no. 16, pp. 3347–3350, 1997.
  59. V. Greger, E. Passarge, W. Hopping, E. Messmer, and B. Horsthemke, “Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma,” Human Genetics, vol. 83, no. 2, pp. 155–158, 1989.
  60. M. Esteller, S. R. Hamilton, P. C. Burger, S. B. Baylin, and J. G. Herman, “Inactivation of the DNA repair gene O(6)-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia,” Cancer Research, vol. 59, no. 4, pp. 793–797, 1999.
  61. LI. Ding, L. Qiu, J. Zhang, and B. Guo, “Camptothecin-induced cell proliferation inhibition and apoptosis enhanced by DNA methyltransferase inhibitor, 5-aza-2′-deoxycytidine,” Biological and Pharmaceutical Bulletin, vol. 32, no. 6, pp. 1105–1108, 2009. View at Publisher · View at Google Scholar
  62. A. Merlo, J. G. Herman, L. Mao et al., “5' CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers,” Nature Medicine, vol. 1, no. 7, pp. 686–692, 1995.
  63. G. Deng, A. Chen, J. Hong, H. S. Chae, and Y. S. Kim, “Methylation of CpG in a small region of the hMLH1 promoter invariably correlates with the absence of gene expression,” Cancer Research, vol. 59, no. 9, pp. 2029–2033, 1999.
  64. D. Gius, H. Cui, C. M. Bradbury et al., “Distinct effects on gene expression of chemical and genetic manipulation of the cancer epigenome revealed by a multimodality approach,” Cancer Cell, vol. 6, no. 4, pp. 361–371, 2004. View at Publisher · View at Google Scholar · View at PubMed
  65. T. J. Walton, G. Li, R. Seth, S. E. McArdle, M. C. Bishop, and R. C. Rees, “DNA demethylation and histone deacetylation inhibition co-operate to re-express estrogen receptor beta and induce apoptosis in prostate cancer cell-lines,” Prostate, vol. 68, no. 2, pp. 210–222, 2008. View at Publisher · View at Google Scholar · View at PubMed
  66. D. Cecconi, M. Donadelli, E. D. Pozza et al., “Synergistic effect of trichostatin A and 5-aza-2'-deoxycytidine on growth inhibition of pancreatic endocrine tumour cell lines: a proteomic study,” Proteomics, vol. 9, no. 7, pp. 1952–1966, 2009. View at Publisher · View at Google Scholar · View at PubMed
  67. M. I. Klisovic, E. A. Maghraby, M. R. Parthun et al., “Depsipeptide (FR 901228) promotes histone acetylation, gene transcription, apoptosis and its activity is enhanced by DNA methyltransferase inhibitors in AML1/ETO-positive leukemic cells,” Leukemia, vol. 17, no. 2, pp. 350–358, 2003. View at Publisher · View at Google Scholar · View at PubMed
  68. G. Chai, L. Li, W. Zhou et al., “HDAC inhibitors act with 5-aza-2′-deoxycytidine to inhibit cell proliferation by suppressing removal of incorporated abases in lung cancer cells,” PLoS One, vol. 3, no. 6, Article ID e2445, 2008. View at Publisher · View at Google Scholar · View at PubMed
  69. M. A. Rudek, M. Zhao, P. He et al., “Pharmacokinetics of 5-azacitidine administered with phenylbutyrate in patients with refractory solid tumors or hematologic malignancies,” Journal of Clinical Oncology, vol. 23, no. 17, pp. 3906–3911, 2005. View at Publisher · View at Google Scholar · View at PubMed
  70. E. A. Griffiths and S. D. Gore, “DNA methyltransferase and histone deacetylase inhibitors in the treatment of myelodysplastic syndromes,” Seminars in Hematology, vol. 45, no. 1, pp. 23–30, 2008. View at Publisher · View at Google Scholar · View at PubMed
  71. Y. Shi, F. Lan, C. Matson et al., “Histone demethylation mediated by the nuclear amine oxidase homolog LSD1,” Cell, vol. 119, no. 7, pp. 941–953, 2004. View at Publisher · View at Google Scholar · View at PubMed
  72. Y. I. Tsukada, J. Fang, H. Erdjument-Bromage et al., “Histone demethylation by a family of JmjC domain-containing proteins,” Nature, vol. 439, no. 7078, pp. 811–816, 2006. View at Publisher · View at Google Scholar · View at PubMed
  73. S. G. Gray, A. H. Iglesias, F. Lizcano et al., “Functional characterization of JMJD2A, a histone deacetylase- and retinoblastoma-binding protein,” Journal of Biological Chemistry, vol. 280, no. 31, pp. 28507–28518, 2005. View at Publisher · View at Google Scholar · View at PubMed
  74. M. G. Lee, C. Wynder, D. A. Bochar, M. A. Hakimi, N. Cooch, and R. Shiekhattar, “Functional interplay between histone demethylase and deacetylase enzymes,” Molecular and Cellular Biology, vol. 26, no. 17, pp. 6395–6402, 2006. View at Publisher · View at Google Scholar · View at PubMed
  75. D. M. Z. Schmidt and D. G. McCafferty, “trans-2-phenylcyclopropylamine is a mechanism-based inactivator of the histone demethylase LSD1,” Biochemistry, vol. 46, no. 14, pp. 4408–4416, 2007. View at Publisher · View at Google Scholar · View at PubMed
  76. J. C. Culhane, L. M. Szewczuk, X. Liu, G. Da, R. Marmorstein, and P. A. Cole, “A mechanism-based inactivator for histone demethylase LSD1,” Journal of the American Chemical Society, vol. 128, no. 14, pp. 4536–4537, 2006. View at Publisher · View at Google Scholar · View at PubMed
  77. D. M. Gooden, D. M. Z. Schmidt, J. A. Pollock, A. M. Kabadi, and D. G. McCafferty, “Facile synthesis of substituted trans-2-arylcyclopropylamine inhibitors of the human histone demethylase LSD1 and monoamine oxidases A and B,” Bioorganic and Medicinal Chemistry Letters, vol. 18, no. 10, pp. 3047–3051, 2008. View at Publisher · View at Google Scholar · View at PubMed
  78. M. G. Lee, C. Wynder, D. M. Schmidt, D. G. McCafferty, and R. Shiekhattar, “Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications,” Chemistry and Biology, vol. 13, no. 6, pp. 563–567, 2006. View at Publisher · View at Google Scholar · View at PubMed
  79. M. Yang, J. C. Culhane, L. M. Szewczuk et al., “Structural basis for the inhibition of the LSD1 histone demethylase by the antidepressant trans-2-phenylcyclopropylamine,” Biochemistry, vol. 46, no. 27, pp. 8058–8065, 2007. View at Publisher · View at Google Scholar · View at PubMed
  80. M. M. Singh, C. A. Manton, K. P. Bhat, et al., “Inhibition of LSD1 sensitizes glioblastoma cells to histone deacetylase inhibitors,” Neuro-Oncology. In press.
  81. J. Wang, S. Hevi, J. K. Kurash et al., “The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation,” Nature Genetics, vol. 41, no. 1, pp. 125–129, 2009. View at Publisher · View at Google Scholar · View at PubMed
  82. D. N. Ciccone, H. Su, S. Hevi et al., “KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints,” Nature, vol. 461, no. 7262, pp. 415–418, 2009. View at Publisher · View at Google Scholar · View at PubMed
  83. Y. Huang, T. M. Stewart, Y. Wu et al., “Novel oligoamine analogues inhibit lysine-specific demethylase 1 and induce reexpression of epigenetically silenced genes,” Clinical Cancer Research, vol. 15, no. 23, pp. 7217–7228, 2009. View at Publisher · View at Google Scholar · View at PubMed
  84. M. Sakurai, N. R. Rose, L. Schultz et al., “A miniaturized screen for inhibitors of Jumonji histone demethylases,” Molecular BioSystems, vol. 6, no. 2, pp. 357–364, 2010. View at Publisher · View at Google Scholar · View at PubMed
  85. J. Chandra, “Oxidative Stress by targeted agents promotes cytotoxicity in hematologic malignancies,” Antioxidants and Redox Signaling, vol. 11, no. 5, pp. 1123–1127, 2009. View at Publisher · View at Google Scholar · View at PubMed
  86. H. Pelicano, D. Carney, and P. Huang, “ROS stress in cancer cells and therapeutic implications,” Drug Resistance Updates, vol. 7, no. 2, pp. 97–110, 2004. View at Publisher · View at Google Scholar · View at PubMed
  87. S. Toyokuni, “Oxidative stress and cancer: the role of redox regulation,” Biotherapy, vol. 11, no. 2-3, pp. 147–154, 1998. View at Publisher · View at Google Scholar
  88. G. Kaur, V. L. Narayanan, P. A. Risbood et al., “Synthesis, structure-activity relationship, and p210 protein tyrosine kinase activity of novel AG 957 analogs,” Bioorganic and Medicinal Chemistry, vol. 13, no. 5, pp. 1749–1761, 2005. View at Publisher · View at Google Scholar · View at PubMed
  89. J. Chandra, J. Tracy, D. Loegering et al., “Adaphostin-induced oxidative stress overcomes BCR/ABL mutation-dependent and -independent imatinib resistance,” Blood, vol. 107, no. 6, pp. 2501–2506, 2006. View at Publisher · View at Google Scholar · View at PubMed
  90. J. Chandra, J. Hackbarth, S. Le et al., “Involvement of reactive oxygen species in adaphostin-induced cytotoxicity in human leukemia cells,” Blood, vol. 102, no. 13, pp. 4512–4519, 2003. View at Publisher · View at Google Scholar · View at PubMed
  91. S. B. Le, M. K. Hailer, S. Buhrow et al., “Inhibition of mitochondrial respiration as a source of adaphostin-induced reactive oxygen species and cytotoxicity,” Journal of Biological Chemistry, vol. 282, no. 12, pp. 8860–8872, 2007. View at Publisher · View at Google Scholar · View at PubMed
  92. L. H. Stockwin, M. A. Bumke, S. X. Yu et al., “Proteomic analysis identifies oxidative stress induction by adaphostin,” Clinical Cancer Research, vol. 13, no. 12, pp. 3667–3681, 2007. View at Publisher · View at Google Scholar · View at PubMed
  93. K. L. Cheung and A. N. Kong, “Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention,” AAPS Journal, vol. 12, no. 1, pp. 87–97, 2010. View at Publisher · View at Google Scholar · View at PubMed
  94. D. Xiao, C. S. Jonhson, D. L. Trump, and S. V. Singh, “Proteasome-mediated degradation of cell division cycle 25C and cyclin-dependent kinase 1 in phenethyl isothiocyanate-induced G-M-phase cell cycle arrest in PC-3 human prostate cancer cells,” Molecular Cancer Therapeutics, vol. 3, no. 5, pp. 567–575, 2004.
  95. A. A. Beklemisheva, J. Feng, Y. A. Yeh, L. G. Wang, and J. W. Chiao, “Modulating testosterone stimulated prostate growth by phenethyl isothiocyanate via Sp1 and androgen receptor down-regulation,” Prostate, vol. 67, no. 8, pp. 863–870, 2007. View at Publisher · View at Google Scholar · View at PubMed
  96. D. Xiao, A. A. Powolny, M. B. Moura et al., “Phenethyl isothiocyanate inhibits oxidative phosphorylation to trigger reactive oxygen species-mediated death of human prostate cancer cells,” Journal of Biological Chemistry, vol. 285, no. 34, pp. 26558–26569, 2010. View at Publisher · View at Google Scholar · View at PubMed
  97. D. Trachootham, Y. Zhou, H. Zhang et al., “Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate,” Cancer Cell, vol. 10, no. 3, pp. 241–252, 2006. View at Publisher · View at Google Scholar · View at PubMed
  98. D. Trachootham, H. Zhang, W. Zhang et al., “Effective elimination of fludarabine-resistant CLL cells by PEITC through a redox-mediated mechanism,” Blood, vol. 112, no. 5, pp. 1912–1922, 2008. View at Publisher · View at Google Scholar · View at PubMed
  99. Y. Hu, W. Lu, G. Chen et al., “Overcoming resistance to histone deacetylase inhibitors in human leukemia with the redox modulating compound β-phenylethyl isothiocyanate,” Blood, vol. 116, no. 15, pp. 2732–2741, 2010. View at Publisher · View at Google Scholar · View at PubMed
  100. M. Orlowski and S. Wilk, “Catalytic activities of the 20 S proteasome, a multicatalytic proteinase complex,” Archives of Biochemistry and Biophysics, vol. 383, no. 1, pp. 1–16, 2000. View at Publisher · View at Google Scholar · View at PubMed
  101. P. Masdehors, S. Omura, H. Merle-Beral et al., “Increased sensitivity of CLL-derived lymphocytes to apoptotic death activation by the proteasome-specific inhibitor lactacystin,” British Journal of Haematology, vol. 105, no. 3, pp. 752–757, 1999. View at Publisher · View at Google Scholar
  102. H. C. A. Drexler, “Activation of the cell death program by inhibition of proteasome function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 3, pp. 855–860, 1997. View at Publisher · View at Google Scholar
  103. X. Y. Pei, Y. Dai, and S. Grant, “Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors,” Clinical Cancer Research, vol. 10, no. 11, pp. 3839–3852, 2004. View at Publisher · View at Google Scholar · View at PubMed
  104. C. Yu, M. Rahmani, D. Conrad, M. Subler, P. Dent, and S. Grant, “The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl cells sensitive and resistant to STI571,” Blood, vol. 102, no. 10, pp. 3765–3774, 2003. View at Publisher · View at Google Scholar · View at PubMed
  105. R. Feng, A. Oton, M. Y. Mapara, G. Anderson, C. Belani, and S. Lentzsch, “The histone deacetylase inhibitor, PXD101, potentiates bortezomib-induced anti-multiple myeloma effect by induction of oxidative stress and DNA damage,” British Journal of Haematology, vol. 139, no. 3, pp. 385–397, 2007. View at Publisher · View at Google Scholar · View at PubMed
  106. S. Bhalla, S. Balasubramanian, K. David et al., “PCI-24781 induces caspase and reactive oxygen species-dependent apoptosis through NF-κB mechanisms and is synergistic with bortezomib in lymphoma cells,” Clinical Cancer Research, vol. 15, no. 10, pp. 3354–3365, 2009. View at Publisher · View at Google Scholar · View at PubMed
  107. Y. H. Ling, L. Liebes, Y. Zou, and R. Perez-Soler, “Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells,” Journal of Biological Chemistry, vol. 278, no. 36, pp. 33714–33723, 2003. View at Publisher · View at Google Scholar · View at PubMed
  108. S. T. Nawrocki, J. S. Carew, M. S. Pino et al., “Aggresome disruption: a novel strategy to enhance bortezomib-induced apoptosis in pancreatic cancer cells,” Cancer Research, vol. 66, no. 7, pp. 3773–3781, 2006. View at Publisher · View at Google Scholar · View at PubMed
  109. T. Hideshima, J. E. Bradner, J. Wong et al., “Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 24, pp. 8567–8572, 2005. View at Publisher · View at Google Scholar · View at PubMed
  110. D. Chauhan, L. Catley, G. Li et al., “A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib,” Cancer Cell, vol. 8, no. 5, pp. 407–419, 2005. View at Publisher · View at Google Scholar · View at PubMed
  111. S. Ruiz, Y. Krupnik, M. Keating, J. Chandra, M. Palladino, and D. McConkey, “The proteasome inhibitor NPI-0052 is a more effective inducer of apoptosis than bortezomib in lymphocytes from patients with chronic lymphocytic leukemia,” Molecular Cancer Therapeutics, vol. 5, no. 7, pp. 1836–1843, 2006. View at Publisher · View at Google Scholar · View at PubMed
  112. J. C. Cusack, R. Liu, L. Xia et al., “NPI-0052 enhances tumoricidal response to conventional cancer therapy in a colon cancer model,” Clinical Cancer Research, vol. 12, no. 22, pp. 6758–6764, 2006. View at Publisher · View at Google Scholar · View at PubMed
  113. C. P. Miller, K. Ban, M. E. Dujka et al., “NPI-0052, a novel proteasome inhibitor, induces caspase-8 and ROS-dependent apoptosis alone and in combination with HDAC inhibitors in leukemia cells,” Blood, vol. 110, no. 1, pp. 267–277, 2007. View at Publisher · View at Google Scholar · View at PubMed
  114. A. M. Roccaro, X. Leleu, A. Sacco et al., “Dual targeting of the proteasome regulates survival and homing in Waldenström macroglobulinemia,” Blood, vol. 111, no. 9, pp. 4752–4763, 2008. View at Publisher · View at Google Scholar · View at PubMed
  115. C. P. Miller, S. Rudra, M. J. Keating, W. G. Wierda, M. Palladino, and J. Chandra, “Caspase-8 dependent histone acetylation by a novel proteasome inhibitor, NPI-0052: a mechanism for synergy in leukemia cells,” Blood, vol. 113, no. 18, pp. 4289–4299, 2009. View at Publisher · View at Google Scholar · View at PubMed
  116. J. Kikuchi, T. Wada, R. Shimizu et al., “Histone deacetylases are critical targets of bortezomib-induced cytotoxicity in multiple myeloma,” Blood, vol. 116, no. 3, pp. 406–417, 2010. View at Publisher · View at Google Scholar · View at PubMed
  117. O. A. O'Connor, A. K. Stewart, M. Vallone et al., “A phase 1 dose escalation study of the safety and pharmacokinetics of the novel proteasome inhibitor carfilzomib (PR-171) in patients with hematologic malignancies,” Clinical Cancer Research, vol. 15, no. 22, pp. 7085–7091, 2009. View at Publisher · View at Google Scholar · View at PubMed
  118. D. J. Kuhn, Q. Chen, P. M. Voorhees et al., “Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma,” Blood, vol. 110, no. 9, pp. 3281–3290, 2007. View at Publisher · View at Google Scholar · View at PubMed
  119. G. Dasmahapatra, D. Lembersky, L. Kramer et al., “The pan-HDAC inhibitor vorinostat potentiates the activity of the proteasome inhibitor carfilzomib in human DLBCL cells in vitro and in vivo,” Blood, vol. 115, no. 22, pp. 4478–4487, 2010. View at Publisher · View at Google Scholar · View at PubMed
  120. X. Chen, P. Wong, E. Radany, and J. Y. C. Wong, “HDAC inhibitor, valproic acid, induces p53-dependent radiosensitization of colon cancer cells,” Cancer Biotherapy and Radiopharmaceuticals, vol. 24, no. 6, pp. 689–699, 2009. View at Publisher · View at Google Scholar · View at PubMed
  121. L. Geng, K. C. Cuneo, A. Fu, T. Tu, P. W. Atadja, and D. E. Hallahan, “Histone deacetylase (HDAC) inhibitor LBH589 increases duration of γ-H2AX foci and confines HDAC4 to the cytoplasm in irradiated non-small cell lung cancer,” Cancer Research, vol. 66, no. 23, pp. 11298–11304, 2006. View at Publisher · View at Google Scholar · View at PubMed
  122. A. R. Venkitaraman, “Modifying chromatin architecture during the response to DNA breakage,” Critical Reviews in Biochemistry and Molecular Biology, vol. 45, no. 1, pp. 2–13, 2010. View at Publisher · View at Google Scholar · View at PubMed
  123. Y. Zhang, M. Adachi, R. Kawamura et al., “Bmf contributes to histone deacetylase inhibitor-mediated enhancing effects on apoptosis after ionizing radiation,” Apoptosis, vol. 11, no. 8, pp. 1349–1357, 2006. View at Publisher · View at Google Scholar · View at PubMed
  124. K. Camphausen, D. Cerna, T. Scott et al., “Enhancement of in vitro and in vivo tumor cell radiosensitivity by valproic acid,” International Journal of Cancer, vol. 114, no. 3, pp. 380–386, 2005. View at Publisher · View at Google Scholar · View at PubMed
  125. F. Zhang, T. Zhang, Z.-H. Teng, R. Zhang, J.-B. Wang, and Q.-B. Mei, “Sensitization to γ-irradiation-induced cell cycle arrest and apoptosis by the histone deacetylase inhibitor trichostatin A in non-small cell lung cancer (NSCLC) cells,” Cancer Biology and Therapy, vol. 8, no. 9, pp. 823–831, 2009.
  126. K. S. Kumar, J. Sonnemann, L. T. T. Hong et al., “Histone deacetylase inhibitors, but not vincristine, cooperate with radiotherapy to induce cell death in medulloblastoma,” Anticancer Research, vol. 27, no. 1 A, pp. 465–470, 2007.
  127. Y. Zhang, M. Adachi, X. Zhao, R. Kawamura, and K. Imai, “Histone deacetylase inhibitors FK228, N-(2-aminophenyl)-4-[N-(pyridin-3-yl-methoxycarbonyl)amino-methyl]benzamide and m-carboxycinnamic acid bis-hydroxamide augment radiation-induced cell death in gastrointestinal adenocarcinoma cells,” International Journal of Cancer, vol. 110, no. 2, pp. 301–308, 2004. View at Publisher · View at Google Scholar · View at PubMed
  128. C. A. Banuelos, J. P. Banáth, S. H. MacPhail, J. Zhao, T. Reitsema, and P. L. Olive, “Radiosensitization by the histone deacetylase inhibitor PCI-24781,” Clinical Cancer Research, vol. 13, no. 22, pp. 6816–6826, 2007. View at Publisher · View at Google Scholar · View at PubMed
  129. A. Munshi, T. Tanaka, M. L. Hobbs, S. L. Tucker, V. M. Richon, and R. E. Meyn, “Vorinostat, a histone deacetylase inhibitor, enhances the response of human tumor cells to ionizing radiation through prolongation of γ-H2AX foci,” Molecular Cancer Therapeutics, vol. 5, no. 8, pp. 1967–1974, 2006. View at Publisher · View at Google Scholar · View at PubMed
  130. K. Camphausen, T. Scott, M. Sproull, and P. J. Tofilon, “Enhancement of xenograft tumor radiosensitivity by the histone deacetylase inhibitor MS-275 and correlation with histone hyperacetylation,” Clinical Cancer Research, vol. 10, no. 18 I, pp. 6066–6071, 2004. View at Publisher · View at Google Scholar · View at PubMed
  131. I. A. Kim, J. H. Shin, I. H. Kim et al., “Histone deacetylase inhibitor-mediated radiosensitization of human cancer cells: class differences and the potential influence of p53,” Clinical Cancer Research, vol. 12, no. 3 I, pp. 940–949, 2006. View at Publisher · View at Google Scholar · View at PubMed
  132. M. S. Kim, M. Blake, J. H. Baek, G. Kohlhagen, Y. Pommier, and F. Carrier, “Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA,” Cancer Research, vol. 63, no. 21, pp. 7291–7300, 2003.
  133. R. Stupp, W. P. Mason, M. J. Van Den Bent et al., “Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma,” New England Journal of Medicine, vol. 352, no. 10, pp. 987–996, 2005. View at Publisher · View at Google Scholar · View at PubMed
  134. M. Entin-Meer, X. Yang, S. R. VandenBerg et al., “In vivo efficacy of a novel histone deacetylase inhibitor in combination with radiation for the treatment of gliomas,” Neuro-Oncology, vol. 9, no. 2, pp. 82–88, 2007. View at Publisher · View at Google Scholar · View at PubMed
  135. D. Siegel, M. Hussein, C. Belani et al., “Vorinostat in solid and hematologic malignancies,” Journal of Hematology and Oncology, vol. 2, article no. 31, 2009. View at Publisher · View at Google Scholar · View at PubMed
  136. M. A. Dimopoulos, J. F. San-Miguel, and K. C. Anderson, “Emerging therapies for the treatment of relapsed or refractory multiple myeloma,” European Journal of Haematology, vol. 86, no. 1, pp. 1–15, 2011. View at Publisher · View at Google Scholar · View at PubMed
  137. L. R. Silverman, A. Verma, R. Odchimar-Reissig, et al., “A phase I trial of the epigenetic modulators vorinostat, in combination with azacitidine (azaC) in patients with the Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML): a study of the New York Cancer Consortium,” ASH Annual Meeting Abstracts, vol. 112, no. 11, p. 3656, 2008.
  138. S. D. Gore, A. Jiemjit, L. B. Silverman, et al., “Combined methyltransferase/histone deacetylase inhibition with 5-azacitidine and ms-275 in patients with MDS, CMMoL and AML: clinical response, histone acetylation and DNA damage,” ASH Annual Meeting Abstracts, vol. 108, no. 11, p. 517, 2006.
  139. R. W. Johnstone and J. D. Licht, “Histone deacetylase inhibitors in cancer therapy: is transcription the primary target?” Cancer Cell, vol. 4, no. 1, pp. 13–18, 2003. View at Publisher · View at Google Scholar