About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 520940, 8 pages
http://dx.doi.org/10.1155/2011/520940
Review Article

Regulatory T Cells and Parasites

1Institute for Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany
2Department of Medical Microbiology and Parasitology, Ladoke Akintola University, PMB 4400, Osogbo, Nigeria

Received 30 June 2011; Revised 19 September 2011; Accepted 4 October 2011

Academic Editor: Luis I. Terrazas

Copyright © 2011 TP. Velavan and Olusola Ojurongbe. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. M. Maizels, “Parasite immunomodulation and polymorphisms of the immune system,” Journal of Biology, vol. 8, no. 7, article 62, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Schmid-Hempel, “Parasite immune evasion: a momentous molecular war,” Trends in Ecology and Evolution, vol. 23, no. 6, pp. 318–326, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Belkaid, R. B. Blank, and I. Suffia, “Natural regulatory T cells and parasites: a common quest for host homeostasis,” Immunological Reviews, vol. 212, pp. 287–300, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. T. P. Velavan, S. Bechlars, J. Tomiuk, P. G. Kremsner, and J. F.J. Kun, “Molecular characterization of regulatory polymorphisms in the promoter region of the STAT6 gene in a gabonese population,” Memorias do Instituto Oswaldo Cruz, vol. 106, no. 1, pp. 65–69, 2011.
  5. S. Sakaguchi, “Regulatory T cells: key controllers of immunologic self-tolerance,” Cell, vol. 101, no. 5, pp. 455–458, 2000. View at Scopus
  6. S. Sakaguchi, “Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses,” Annual Review of Immunology, vol. 22, pp. 531–562, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Sakaguchi, R. Setoguchi, H. Yagi, and T. Nomura, “Naturally arising Foxp3-expressing CD25(+)CD4(+) regulatory T cells in self-tolerance and autoimmune disease,” Current Concepts in Autoimmunity and Chronic Inflamation, vol. 305, pp. 51–66, 2006.
  8. M. Miyara and S. Sakaguchi, “Natural regulatory T cells: mechanisms of suppression,” Trends in Molecular Medicine, vol. 13, no. 3, pp. 108–116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Belkaid, “Regulatory T cells and infection: a dangerous necessity,” Nature Reviews Immunology, vol. 7, no. 11, pp. 875–888, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. S. A. Hanel, V. Tp, P. G. Kremsner, and J. F.J. Kun, “Novel and functional regulatory SNPs in the promoter region of FOXP3 gene in a Gabonese population,” Immunogenetics, vol. 63, no. 7, pp. 409–415, 2011. View at Publisher · View at Google Scholar
  11. J. C. Lee, E. Hayman, H. J. Pegram et al., “In vivo inhibition of human CD19-targeted effector T cells by natural T regulatory cells in a xenotransplant murine model of B cell malignancy,” Cancer Research, vol. 71, no. 8, pp. 2871–2881, 2011. View at Publisher · View at Google Scholar
  12. J. E. Mold, J. Michaëlsson, T. D. Burt et al., “Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero,” Science, vol. 322, no. 5907, pp. 1562–1565, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. H. von Boehmer, “Mechanisms of suppression by suppressor T cells,” Nature Immunology, vol. 6, no. 4, pp. 338–344, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. D. A. Horwitz, S. G. Zheng, and J. D. Gray, “Natural and TGF-β-induced Foxp3+CD4+ CD25+ regulatory T cells are not mirror images of each other,” Trends in Immunology, vol. 29, no. 9, pp. 429–435, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Bacchetta, E. Gambineri, and M. G. Roncarolo, “Role of regulatory T cells and FOXP3 in human diseases,” Journal of Allergy and Clinical Immunology, vol. 120, no. 2, pp. 227–235, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. J. D. Fontenot, M. A. Gavin, and A. Y. Rudensky, “Foxp3 programs the development and function of CD4+CD25+ regulatory T cells,” Nature Immunology, vol. 4, no. 4, pp. 330–336, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Haque, F. Lei, X. Xiong, and J. Song, “The regulation of FoxP3-expressing regulatory T cells,” Endocrine, Metabolic & Immune Disorders—Drug Targets. In press.
  18. Y. Belkaid and K. Tarbell, “Regulatory T cells in the control of host-microorganism interactions,” Annual Review of Immunology, vol. 27, pp. 551–589, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Cools, P. Ponsaerts, V. F. I. Van Tendeloo, and Z. N. Berneman, “Regulatory T cells and human disease,” Clinical and Developmental Immunology, vol. 2007, Article ID 89195, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Paust, L. Lu, N. McCarty, and H. Cantor, “Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 28, pp. 10398–10403, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Sakaguchi, N. Sakaguchi, J. Shimizu et al., “Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance,” Immunological Reviews, vol. 182, pp. 18–32, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. K. J. Maloy, L. Salaun, R. Cahill, G. Dougan, N. J. Saunders, and F. Powrie, “CD4+CD25+ TR cells suppress innate immune pathology through cytokine-dependent mechanisms,” Journal of Experimental Medicine, vol. 197, no. 1, pp. 111–119, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. A. L. Mellor and D. H. Munn, “IDO expression by dendritic cells: tolerance and tryptophan catabolism,” Nature Reviews Immunology, vol. 4, no. 10, pp. 762–774, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. D. H. Munn, M. D. Sharma, J. R. Lee et al., “Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase,” Science, vol. 297, no. 5588, pp. 1867–1870, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. W. J. Grossman, J. W. Verbsky, B. L. Tollefsen, C. Kemper, J. P. Atkinson, and T. J. Ley, “Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells,” Blood, vol. 104, no. 9, pp. 2840–2848, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. W. J. Grossman, J. W. Verbsky, W. Barchet, M. Colonna, J. P. Atkinson, and T. J. Ley, “Human T regulatory cells can use the perforin pathway to cause autologous target cell death,” Immunity, vol. 21, no. 4, pp. 589–601, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Taylor, J. Verhagen, K. Blaser, M. Akdis, and C. A. Akdis, “Mechanisms of immune suppression by interleukin-10 and transforming growth factor-β: the role of T regulatory cells,” Immunology, vol. 117, no. 4, pp. 433–442, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. K. Levings, R. Bacchetta, U. Schulz, and M. G. Roncarolo, “The role of IL-10 and TGF-beta in the differentiation and effector function of T regulatory cells,” International archives of allergy and immunology, vol. 129, no. 4, pp. 263–276, 2002. View at Scopus
  29. M. L. Chen, M. J. Pittet, L. Gorelik et al., “Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-β signals in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 2, pp. 419–424, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. K. W. Moore, R. D. Malefyt, R. L. Coffman, and A. O'Garra, “Interleukin-10 and the interleukin-10 receptor,” Annual Review of Immunology, vol. 19, pp. 683–765, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Strobl and W. Knapp, “TGF-β1 regulation of dendritic cells,” Microbes and Infection, vol. 1, no. 15, pp. 1283–1290, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. J. R. Grainger, K. A. Smith, J. P. Hewitson et al., “Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-β pathway,” Journal of Experimental Medicine, vol. 207, no. 11, pp. 2331–2341, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Montes, C. Sanchez, K. Verdonck et al., “Regulatory T cell expansion in HTLV-1 and strongyloidiasis co-infection is associated with reduced IL-5 responses to Strongyloides stercoralis antigen,” PLoS Neglected Tropical Diseases, vol. 3, no. 6, article e456, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. R. M. Maizels and M. Yazdanbakhsh, “Immune regulation by helminth parasites: cellular and molecular mechanisms,” Nature Reviews Immunology, vol. 3, no. 9, pp. 733–744, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Brustoski, U. Möller, M. Kramer et al., “Reduced cord blood immune effector-cell responsiveness mediated by CD4 + cells induced in utero as a consequence of placental Plasmodium falciparum infection,” Journal of Infectious Diseases, vol. 193, no. 1, pp. 146–154, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. A. M. Vigário, O. Gorgette, H. C. Dujardin et al., “Regulatory CD4+CD25+ Foxp3+ T cells expand during experimental Plasmodium infection but do not prevent cerebral malaria,” International Journal for Parasitology, vol. 37, no. 8-9, pp. 963–973, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. F. H. Amante, A. C. Stanley, L. M. Randall et al., “A role for natural regulatory T cells in the pathogenesis of experimental cerebral malaria,” American Journal of Pathology, vol. 171, no. 2, pp. 548–559, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Q. Nie, N. J. Bernard, L. Schofield, and D. S. Hansen, “CD4+ CD25+ regulatory T cells suppress CD4 + T-cell function and inhibit the development of Plasmodium berghei-specific TH1 responses involved in cerebral malaria pathogenesis,” Infection and Immunity, vol. 75, no. 5, pp. 2275–2282, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Minigo, T. Woodberry, K. A. Piera et al., “Parasite-dependent expansion of TNF receptor II-positive regulatory T cells with enhanced suppressive activity in adults with severe malaria,” PLoS Pathogens, vol. 5, no. 4, Article ID e1000402, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. S. M. Todryk, P. Bejon, T. Mwangi et al., “Correlation of memory T cell responses against TRAP with protection from clinical malaria, and CD4+ CD25high T cells with susceptibility in Kenyans,” PLoS ONE, vol. 3, no. 4, Article ID e2027, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Walther, J. E. Tongren, L. Andrews et al., “Upregulation of TGF-β, FOXP3, and CD4+CD25+ regulatory T cells correlates with more rapid parasite growth in human malaria infection,” Immunity, vol. 23, no. 3, pp. 287–296, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. L. L. Bueno, C. G. Morais, F. F. Araújo et al., “Plasmodium vivax: induction of CD4+CD25+FoxP3 + regulatory T cells during infection are directly associated with level of circulating parasites,” PLoS ONE, vol. 5, no. 3, Article ID e9623, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Wu, Q. H. Wang, L. Zheng et al., “Plasmodium yoelii: distinct CD4+CD25+ regulatory T cell responses during the early stages of infection in susceptible and resistant mice,” Experimental Parasitology, vol. 115, no. 3, pp. 301–304, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Satoguina, M. Mempel, J. Larbi et al., “Antigen-specific T regulatory-1 cells are associated with immunosuppression in a chronic helminth infection (onchocerciasis),” Microbes and Infection, vol. 4, no. 13, pp. 1291–1300, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. W. H. Hoffmann, A. W. Pfaff, H. Schulz-Key, and P. T. Soboslav, “Determinants for resistance and susceptibility to microfilaraemia in Litomosoides sigmodontis filariasis,” Parasitology, vol. 122, no. 6, pp. 641–649, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. P. T. Soboslay, C. M. Dreweck, H. R. Taylor, B. Brotman, P. Wenk, and B. M. Greene, “Experimental onchocerciasis in chimpanzees: cell-mediated immune responses, and production and effects of IL-1 and IL-2 with Onchocerca volvulus infection,” Journal of Immunology, vol. 147, no. 1, pp. 346–353, 1991. View at Scopus
  47. J. C. Marie, J. J. Letterio, M. Gavin, and A. Y. Rudensky, “TGF-β1 maintains suppressor function and Foxp3 expression in CD4 +CD25+ regulatory T cells,” Journal of Experimental Medicine, vol. 201, no. 7, pp. 1061–1067, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. M. G. Roncarolo, S. Gregori, M. Battaglia, R. Bacchetta, K. Fleischhauer, and M. K. Levings, “Interleukin-10-secreting type 1 regulatory T cells in rodents and humans,” Immunological Reviews, vol. 212, pp. 28–50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. M. D. Taylor, N. van der Werf, A. Harris et al., “Early recruitment of natural CD4+Foxp3+ Treg cells by infective larvae determines the outcome of filarial infection,” European Journal of Immunology, vol. 39, no. 1, pp. 192–206, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. H. J. McSorley, Y. M. Harcus, J. Murray, M. D. Taylor, and R. M. Maizels, “Expansion of Foxp3+ regulatory T cells in mice infected with the filarial parasite Brugia malayi,” Journal of Immunology, vol. 181, no. 9, pp. 6456–6466, 2008. View at Scopus
  51. C. A. M. Finney, M. D. Taylor, M. S. Wilson, and R. M. Maizels, “Expansion and activation of CD4+CD25+ regulatory T cells in Heligmosomoides polygyrus infection,” European Journal of Immunology, vol. 37, no. 7, pp. 1874–1886, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. M. S. Wilson, M. D. Taylor, A. Balic, C. A. M. Finney, J. R. Lamb, and R. M. Maizels, “Suppression of allergic airway inflammation by helminth-induced regulatory T cells,” Journal of Experimental Medicine, vol. 202, no. 9, pp. 1199–1212, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. D. P. Beiting, L. F. Gagliardo, M. Hesse, S. K. Bliss, D. Meskill, and J. A. Appleton, “Coordinated control of immunity to muscle stage Trichinella spiralis by IL-10, regulatory T cells, and TGF-β,” Journal of Immunology, vol. 178, no. 2, pp. 1039–1047, 2007. View at Scopus
  54. F. S. Mariano, F. R. S. Gutierrez, W. R. Pavanelli et al., “The involvement of CD4+CD25+ T cells in the acute phase of Trypanosoma cruzi infection,” Microbes and Infection, vol. 10, no. 7, pp. 825–833, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. F. F. de Araújo, D. M. Vitelli-Avelar, A. Teixeira-Carvalho et al., “Regulatory T cells phenotype in different clinical forms of chagas' disease,” PLoS Neglected Tropical Diseases, vol. 5, no. 5, 2011. View at Publisher · View at Google Scholar
  56. K. W. Schleifer and J. M. Mansfield, “Suppressor macrophages in African trypanosomiasis inhibit T cell proliferative responses by nitric oxide and prostaglandins,” Journal of Immunology, vol. 151, no. 10, pp. 5492–5503, 1993. View at Scopus
  57. M. Guilliams, G. Oldenhove, W. Noel et al., “African trypanosomiasis: naturally occurring regulatory T cells favor trypanotolerance by limiting pathology associated with sustained type 1 inflammation,” Journal of Immunology, vol. 179, no. 5, pp. 2748–2757, 2007. View at Scopus
  58. J. G. Montoya, H. B. Huffman, and J. S. Remington, “Evaluation of the immunoglobulin G avidity test for diagnosis of toxoplasmic lymphadenopathy,” Journal of Clinical Microbiology, vol. 42, no. 10, pp. 4627–4631, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. E. Y. Denkers and R. T. Gazzinelli, “Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection,” Clinical Microbiology Reviews, vol. 11, no. 4, pp. 569–588, 1998. View at Scopus
  60. E. P. Tenorio, J. E. Olguín, J. Fernández, P. Vieyra, and R. Saavedra, “Reduction of Foxp3+ cells by depletion with the PC61 mAb induces mortality in resistant BALB/c mice infected with Toxoplasma gondii,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 786078, 2010. View at Scopus
  61. R. M. Maizels, D. A. P. Bundy, M. E. Selkirk, D. F. Smith, and R. M. Anderson, “Immunological modulation and evasion by helminth parasites in human populations,” Nature, vol. 365, no. 6449, pp. 797–805, 1993. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Belkaid, “Role of Foxp3-positive regulatory T cells during infection,” European Journal of Immunology, vol. 38, no. 4, pp. 918–921, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. T. A. Wynn, A. W. Cheever, M. E. Williams et al., “IL-10 regulates liver pathology in acute murine Schistosomiasis mansoni but is not required for immune down-modulation of chronic disease,” Journal of Immunology, vol. 160, no. 9, pp. 4473–4480, 1998. View at Scopus
  64. M. Niikura, S. Kamiya, A. Nakane, K. Kita, and F. Kobayashi, “IL-10 plays a crucial role for the protection of experimental cerebral malaria by co-infection with non-lethal malaria parasites,” International Journal for Parasitology, vol. 40, no. 1, pp. 101–108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Specht, D. F. Ruiz, B. Dubben, S. Deininger, and A. Hoerauf, “Filaria-induced IL-10 suppresses murine cerebral malaria,” Microbes and Infection, vol. 12, no. 8-9, pp. 635–642, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Mahanty, S. N. Mollis, M. Ravichandran et al., “High levels of spontaneous and parasite antigen-driven interleukin-10 production are associated with antigen-specific hyporesponsiveness in human lymphatic filariasis,” Journal of Infectious Diseases, vol. 173, no. 3, pp. 769–773, 1996. View at Scopus
  67. M. Baumgart, F. Tompkins, J. Leng, and M. Hesse, “Naturally occurring CD4+Foxp3+ regulatory T cells are an essential, IL-10-independent part of the immunoregulatory network in Schistosoma mansoni egg-induced inflammation,” Journal of Immunology, vol. 176, no. 9, pp. 5374–5387, 2006. View at Scopus
  68. J. J. Taylor, M. Mohrs, and E. J. Pearce, “Regulatory T cell responses develop in parallel to Th responses and control the magnitude and phenotype of the Th effector population,” Journal of Immunology, vol. 176, no. 10, pp. 5839–5847, 2006. View at Scopus
  69. K. P. Singh, H. C. Gerard, A. P. Hudson, T. R. Reddy, and D. L. Boros, “Retroviral Foxp3 gene transfer ameliorates liver granuloma pathology in Schistosoma mansoni infected mice,” Immunology, vol. 114, no. 3, pp. 410–417, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Watanabe, P. N. M. Mwinzi, C. L. Black et al., “T regulatory cell levels decrease in people infected with Schistosoma mansoni on effective treatment,” American Journal of Tropical Medicine and Hygiene, vol. 77, no. 4, pp. 676–682, 2007. View at Scopus
  71. P. Zaccone, O. Burton, N. Miller, F. M. Jones, D. W. Dunne, and A. Cooke, “Schistosoma mansoni egg antigens induce Treg that participate in diabetes prevention in NOD mice,” European Journal of Immunology, vol. 39, no. 4, pp. 1098–1107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. X. Wang, S. Zhou, Y. Chi et al., “CD4+CD25+ Treg induction by an HSP60-derived peptide SJMHE1 from Schistosoma japonicum is TLR2 dependent,” European Journal of Immunology, vol. 39, no. 11, pp. 3052–3065, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. R. M. Anthony, L. I. Rutitzky, J. F. Urban Jr., M. J. Stadecker, and W. C. Gause, “Protective immune mechanisms in helminth infection,” Nature Reviews Immunology, vol. 7, no. 12, pp. 975–987, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. R. Maurya, R. Kumar, V. K. Prajapati et al., “Human visceral leishmaniasis is not associated with expansion or accumulation of Foxp3+ CD4 cells in blood or spleen,” Parasite Immunology, vol. 32, no. 7, pp. 479–483, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Mendez, S. K. Reckling, C. A. Piccirillo, D. Sacks, and Y. Belkaid, “Role for CD4+ CD25+ regulatory T cells in reactivation of persistent Leishmaniasis and control of concomitant immunity,” Journal of Experimental Medicine, vol. 200, no. 2, pp. 201–210, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. P. C. Melby, Y. Z. Yang, J. Cheng, and W. Zhao, “Regional differences in the cellular immune response to experimental cutaneous or visceral infection with Leishmania donovani,” Infection and Immunity, vol. 66, no. 1, pp. 18–27, 1998. View at Scopus
  77. L. Nicolas, S. Sidjanski, J. H. Colle, and G. Milon, “Leishmania major reaches distant cutaneous sites where it persists transiently while persisting durably in the primary dermal site and its draining lymph node: a study with laboratory mice,” Infection and Immunity, vol. 68, no. 12, pp. 6561–6566, 2000. View at Publisher · View at Google Scholar · View at Scopus
  78. T. Aebischer and E. Handman, “Influence of the route of vaccination on antigen presentation and T-cell mediated lymphokine response in murine cutaneous leishmaniasis,” Journal of Cellular Biochemistry, vol. 64, 1993.
  79. T. Aebischer, S. F. Moody, and E. Handman, “Persistence of virulent Leishmania major in murine cutaneous leishmaniasis: a possible hazard for the host,” Infection and Immunity, vol. 61, no. 1, pp. 220–226, 1993. View at Scopus
  80. Y. Belkaid, K. F. Hoffmann, S. Mendez et al., “The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure,” Journal of Experimental Medicine, vol. 194, no. 10, pp. 1497–1506, 2001. View at Publisher · View at Google Scholar · View at Scopus
  81. K. Yamakami, S. Akao, T. Tadakuma, Y. Nitta, J. I. Miyazaki, and N. Yoshizawa, “Administration of plasmids expressing interleukin-4 and interleukin-10 causes BALB/c mice to induce a T helper 2-type response despite the expected T helper 1-type response with a low-dose infection of Leishmania major,” Immunology, vol. 105, no. 4, pp. 515–523, 2002. View at Publisher · View at Google Scholar · View at Scopus
  82. S. N. de-Campos, C. Souza-Lemos, A. Teva, R. Porrozzi, and G. Grimaldi, “Systemic and compartmentalised immune responses in a Leishmania braziliensis-macaque model of self-healing cutaneous leishmaniasis,” Veterinary Immunology and Immunopathology, vol. 137, no. 1-2, pp. 149–154, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. T. P. Velavan, S. Bechlars, X. Huang, P. G. Kremsner, and J. F.J. Kun, “Novel regulatory SNPs in the promoter region of the TNFRSF18 gene in a gabonese population,” Brazilian Journal of Medical and Biological Research, vol. 44, no. 5, pp. 418–420, 2011. View at Publisher · View at Google Scholar
  84. A. Salhi, V. Rodrigues Jr., F. Santoro et al., “Immunological and genetic evidence for a crucial role of IL-10 in cutaneous lesions in humans infected with Leishmania braziliensis,” Journal of Immunology, vol. 180, no. 9, pp. 6139–6148, 2008. View at Scopus
  85. A. V. Grant, M. I. Araujo, E. V. Ponte et al., “Polymorphisms in IL10 are associated with total Immunoglobulin E levels and Schistosoma mansoni infection intensity in a Brazilian population,” Genes and Immunity, vol. 12, pp. 46–50, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. G. C. Costa, M. O. D. C. Rocha, P. R. Moreira et al., “Functional IL-10 gene polymorphism is associated with Chagas disease cardiomyopathy,” Journal of Infectious Diseases, vol. 199, no. 3, pp. 451–454, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. C. Ouma, G. C. Davenport, T. Were et al., “Haplotypes of IL-10 promoter variants are associated with susceptibility to severe malarial anemia and functional changes in IL-10 production,” Human Genetics, vol. 124, no. 5, pp. 515–524, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. H. He, A. Isnard, B. Kouriba et al., “A STAT6 gene polymorphism is associated with high infection levels in urinary schistosomiasis,” Genes and Immunity, vol. 9, no. 3, pp. 195–206, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. A. Isnard, B. Kouriba, O. Doumbo, and C. Chevillard, “Association of rs7719175, located in the IL13 gene promoter, with Schistosoma haematobium infection levels and identification of a susceptibility haplotype,” Genes and Immunity, vol. 12, pp. 31–39, 2011. View at Publisher · View at Google Scholar · View at Scopus