About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 526705, 6 pages
http://dx.doi.org/10.1155/2011/526705
Research Article

Creep Behavior of Passive Bovine Extraocular Muscle

1Department of Ophthalmology, Jules Stein Eye Institute, University of California Los Angeles, 100 Stein Plaza, UCLA, Los Angeles, CA 90095-7002, USA
2Department of Mechanical Engineering, University of California, Los Angeles, CA, USA
3Biomedical Engineering Interdepartmental Program, University of California, Los Angeles, CA, USA
4Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA
5Department of Neurology, University of California, Los Angeles, CA, USA

Received 6 June 2011; Accepted 16 August 2011

Academic Editor: Henk Granzier

Copyright © 2011 Lawrence Yoo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Robinson, D. M. O'Meara, A. B. Scott, and C. C. Collins, “Mechanical components of human eye movements,” Journal of Applied Physiology, vol. 26, no. 5, pp. 548–553, 1969. View at Scopus
  2. C. C. Collins, M. R. Carlson, A. B. Scott, and A. Jampolsky, “Extraocular muscle forces in normal human subjects,” Investigative Ophthalmology and Visual Science, vol. 20, no. 5, pp. 652–664, 1981. View at Scopus
  3. H. J. Simonsz, “Force-length recording of eye muscles during local anesthesia surgery in 32 strabismus patients,” Strabismus, vol. 2, no. 4, pp. 197–218, 1994.
  4. C. Quaia, H. S. Ying, A. M. Nichols, and L. M. Optican, “The viscoelastic properties of passive eye muscle in primates. I: static and step responses,” PLoS ONE, vol. 4, no. 4, Article ID e4850, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues, Springer, New York, NY, USA, 1993.
  6. L. H. Yoo, H. Kim, V. Gupta, and J. L. Demer, “Quasi-linear viscoelastic behavior of bovine extra-ocular muscle tissue,” Investigative Ophthalmology and Visual Science, vol. 50, no. 8, pp. 3721–3728, 2009. View at Publisher · View at Google Scholar
  7. C. Quaia, H. S. Ying, and L. M. Optican, “The viscoelastic properties of passive eye muscle in primates. II: testing the quasi-linear theory,” PLoS ONE, vol. 4, no. 8, Article ID e6480, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. M. S. Shall, D. M. Dimitrova, and S. J. Goldberg, “Extraocular motor unit and whole-muscle contractile properties in the squirrel monkey: summation of forces and fiber morphology,” Experimental Brain Research, vol. 151, no. 3, pp. 338–345, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Sklavos, D. M. Dimitrova, S. J. Goldberg, J. Porrill, and P. Dean, “Long time-constant behavior of the oculomotor plant in barbiturate- anesthetized primate,” Journal of Neurophysiology, vol. 95, no. 2, pp. 774–782, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. J. C. Downs, J. K. F. Suh, K. A. Thomas, A. J. Bellezza, R. T. Hart, and C. F. Burgoyne, “Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes,” Investigative Ophthalmology and Visual Science, vol. 46, no. 2, pp. 540–546, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. H. C. Lin, M. K. W. Kwan, and S. L. Y. Woo, “On the stress relaxation properties of the anterior cruciate ligament(ACL),” in Proceedings of the Annual Meeting of the American Society of Mechanical Engineers, pp. 5–6, Advances in Bioengineering, 1987. View at Scopus
  12. C. E. Miller and C. L. Wong, “Trabeculated embryonic myocardium shows rapid stress relaxation and non-quasi-linear viscoelastic behavior,” Journal of Biomechanics, vol. 33, no. 5, pp. 615–622, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. V. C. Mow, S. C. Kuei, W. M. Lai, and C. G. Armstrong, “Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments,” Journal of Biomechanical Engineering, vol. 102, no. 1, pp. 73–84, 1980. View at Scopus
  14. I. S. Nash, P. R. Greene, and C. S. Foster, “Comparison of mechanical properties of keratoconus and normal corneas,” Experimental Eye Research, vol. 35, no. 5, pp. 413–424, 1982. View at Scopus
  15. J. G. Pinto and Y. C. Fung, “Mechanical properties of the heart muscle in the passive state,” Journal of Biomechanics, vol. 6, no. 6, pp. 597–616, 1973. View at Scopus
  16. J. M. Huyghe, D. H. van Campen, T. Arts, and R. M. Heethaar, “The constitutive behaviour of passive heart muscle tissue: a quasi-linear viscoelastic formulation,” Journal of Biomechanics, vol. 24, no. 9, pp. 841–849, 1991. View at Publisher · View at Google Scholar · View at Scopus
  17. B. S. Myers, J. H. McElhaney, and B. J. Doherty, “The viscoelastic responses of the human cervical spine in torsion: experimental limitations of quasi-linear theory, and a method for reducing these effects,” Journal of Biomechanics, vol. 24, no. 9, pp. 811–817, 1991. View at Publisher · View at Google Scholar · View at Scopus
  18. S. R. Toms, G. J. Dakin, J. E. Lemons, and A. W. Eberhardt, “Quasi-linear viscoelastic behavior of the human periodontal ligament,” Journal of Biomechanics, vol. 35, no. 10, pp. 1411–1415, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. C. E. Miller, M. A. Vanni, and B. B. Keller, “Characterization of passive embryonic myocardium by quasi-linear viscoelasticity theory,” Journal of Biomechanics, vol. 30, no. 9, pp. 985–988, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. S. L.-Y. Woo, B. R. Simon, S. C. Kuei, and W. H. Akeson, “Quasi-linear viscoelastic properties of normal articular cartilage,” Journal of Biomechanical Engineering, vol. 102, no. 2, pp. 85–90, 1980. View at Scopus
  21. Y. C. Fung, “Elasticity of soft tissues in simple elongation,” The American Journal of Physiology, vol. 213, no. 6, pp. 1532–1544, 1967. View at Scopus
  22. Y. C. Fung, Stress-Strain-History Relations of Soft Tissues in Simple Elongation, Biomechanics: Its Foundations and Objectives, Prentice-Hall, Englewood Cliffs, NJ, USA, 1972.
  23. N. Simin, L. E. Bilston, and N. Phan-Thien, “Viscoelastic properties of pig kidney in shear, experimental results and modelling,” Rheologica Acta, vol. 41, no. 1, pp. 180–192, 2002. View at Scopus
  24. G. M. Thornton, C. B. Frank, and N. G. Shrive, “Ligament creep behavior can be predicted from stress relaxation by incorporating fiber recruitment,” Journal of Rheology, vol. 45, no. 2, pp. 493–507, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. B. R. Simon, R. S. Coats, and S. L. Y. Woo, “Relaxation and creep quasilinear viscoelastic models for normal articular cartilage,” Journal of Biomechanical Engineering, vol. 106, no. 2, pp. 159–164, 1984. View at Scopus
  26. X. Hu and G. S. Daehn, “Effect of velocity on flow localization in tension,” Acta Materialia, vol. 44, no. 3, pp. 1021–1033, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. W. Ze-Ping, “Void-containing nonlinear materials subject to high-rate loading,” Journal of Applied Physics, vol. 81, no. 11, pp. 7213–7227, 1997. View at Scopus
  28. T. Nicholas, “Tensile testing of materials at high rates of strain,” Experimental Mechanics, vol. 21, no. 5, pp. 177–185, 1981. View at Publisher · View at Google Scholar · View at Scopus