About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 549107, 14 pages
http://dx.doi.org/10.1155/2011/549107
Review Article

Current Concepts: Mouse Models of Sjögren's Syndrome

1Department of Oral Biology, College of Dentistry, University of Florida, P.O. Box 100424, 1600 SW Archer Road, Gainesville, FL 32610, USA
2Center for Orphan Autoimmune Disorders, College of Dentistry, University of Florida, P.O. Box 100424, 1600 SW Archer Road, Gainesville, FL 32610, USA
3Eli and Edythe L. Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
4Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E25-545, Cambridge, MA 02139, USA

Received 16 September 2010; Accepted 10 November 2010

Academic Editor: Andrea Vecchione

Copyright © 2011 Tegan N. Lavoie et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. I. Fox, “Sjögren's syndrome,” The Lancet, vol. 366, no. 9482, pp. 321–331, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. E. B. Perez, A. Kraus, G. Lopez, M. Cifuentes, and D. Alarcon-Segovia, “Autoimmune thyroid disease in primary Sjogren's syndrome,” American Journal of Medicine, vol. 99, no. 5, pp. 480–484, 1995. View at Publisher · View at Google Scholar · View at Scopus
  3. C. V. Strimlan, E. C. Rosenow, and M. B. E. G. Divertie and Harrison, “Pulmonary manifestations of Sjogren's syndrome,” Chest, vol. 70, no. 3, pp. 354–361, 1976. View at Scopus
  4. M. J. Kaplan and R. W. Ike, “The liver is a common non-exocrine target in primary Sjögren's syndrome: a retrospective review,” BMC Gastroenterology, vol. 2, p. 21, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. W. H. Tu, M. A. Shearn, J. C. Lee, and J. Hopper, “Interstitial nephritis in Sjögren's syndrome,” Annals of Internal Medicine, vol. 69, no. 6, pp. 1163–1170, 1968. View at Scopus
  6. C. G. Helmick, D. T. Felson, R. C. Lawrence et al., “Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I,” Arthritis and Rheumatism, vol. 58, no. 1, pp. 15–25, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Talal, “Overview of Sjögren's syndrome,” Journal of Dental Research, vol. 66, pp. 672–674, 1987. View at Scopus
  8. A. Prabu, T. Marshall, C. Gordon et al., “Use of patient age and anti-Ro/La antibody status to determine the probability of patients with systemic lupus erythematosus and sicca symptoms fulfilling criteria for secondary Sjögren's syndrome,” Rheumatology, vol. 42, no. 1, pp. 189–191, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. S. R. Reader, H. M. Whyte, and P. C. Elmes, “Sjogren's disease and rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 10, no. 3, pp. 288–297, 1951. View at Scopus
  10. T. H. Kirkham, “Scleroderma and Sjögren's syndrome,” British Journal of Ophthalmology, vol. 53, no. 2, pp. 131–133, 1969. View at Scopus
  11. K. S. Culp, C. R. Fleming, and J. Duffy, “Autoimmune associations in primary biliary cirrhosis,” Mayo Clinic Proceedings, vol. 57, no. 6, pp. 365–370, 1982. View at Scopus
  12. F. N. Skopouli, P. C. Fox, V. Galanopoulou, J. C. Atkinson, E. S. Jaffe, and H. M. Moutsopoulos, “T cell subpopulations in the labial minor salivary gland histopathologic lesion of Sjogren's syndrome,” Journal of Rheumatology, vol. 18, no. 2, pp. 210–214, 1991. View at Scopus
  13. T. C. Adamson, R. I. Fox, D. M. Frisman, and F. V. Howell, “Immunohistologic analysis of lymphoid infiltrates in primary Sjogren's syndrome using monoclonal antibodies,” Journal of Immunology, vol. 130, no. 1, pp. 203–208, 1983. View at Scopus
  14. M. N. Manoussakis, S. Boiu, P. Korkolopoulou et al., “Rates of infiltration by macrophages and dendritic cells and expression of interleukin-18 and interleukin-12 in the chronic inflammatory lesions of Sjögren's syndrome: correlation with certain features of immune hyperactivity and factors associated with high risk of lymphoma development,” Arthritis and Rheumatism, vol. 56, no. 12, pp. 3977–3988, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Vitali, S. Bombardieri, R. Jonsson et al., “Classification criteria for Sjögren's syndrome: a revised version of the European criteria proposed by the American-European Consensus Group,” Annals of the Rheumatic Diseases, vol. 61, no. 6, pp. 554–558, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Cavill, S. A. Waterman, and T. P. Gordon, “Antibodies raised against the second extracellular loop of the human muscarinic M3 receptor mimic functional autoantibodies in Sjögren's syndrome,” Scandinavian Journal of Immunology, vol. 59, no. 3, pp. 261–266, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Cha, E. Singson, J. Cornelius, J. P. Yagna, H. J. Knot, and A. B. Peck, “Muscarinic acetylcholine type-3 receptor desensitization due to chronic exposure to Sjögren's syndrome-associated autoantibodies,” Journal of Rheumatology, vol. 33, no. 2, pp. 296–306, 2006. View at Scopus
  18. L. J. Dawson, H. E. Allison, J. Stanbury, D. Fitzgerald, and P. M. Smith, “Putative anti-muscarinic antibodies cannot be detected in patients with primary Sjögren's syndrome using conventional immunological approaches,” Rheumatology, vol. 43, no. 12, pp. 1488–1495, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. L. J. Dawson, E. A. Field, A. R. Harmer, and P. M. Smith, “Acetylcholine-evoked calcium mobilization and ion channel activation in human labial gland acinar cells from patients with primary Sjögren's syndrome,” Clinical and Experimental Immunology, vol. 124, no. 3, pp. 480–485, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Gao, S. Cha, R. Jonsson, J. Opalko, and A. B. Peck, “Detection of anti-type 3 muscarinic acetylcholine receptor autoantibodies in the sera of Sjögren's syndrome patients by use of a transfected cell line assay,” Arthritis and Rheumatism, vol. 50, no. 8, pp. 2615–2621, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Li, Y. M. Ha, NA. Y. Kü et al., “Inhibitory effects of autoantibodies on the muscarinic receptors in Sjögren's syndrome,” Laboratory Investigation, vol. 84, no. 11, pp. 1430–1438, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. A. J. Smith, M. W. Jackson, F. Wang, D. Cavill, M. Rischmueller, and T. P. Gordon, “Neutralization of muscarinic receptor autoantibodies by intravenous immunoglobulin in Sjögren syndrome,” Human Immunology, vol. 66, no. 4, pp. 411–416, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Wang, M. W. Jackson, V. Maughan et al., “Passive transfer of Sjögren's syndrome IgG produces the pathophysiology of overactive bladder,” Arthritis and Rheumatism, vol. 50, no. 11, pp. 3637–3645, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. S. A. Waterman, T. P. Gordon, and M. Rischmueller, “Inhibitory effects of muscarinic receptor autoantibodies on parasympathetic neurotransmission in Sjogren's syndrome,” Arthritis and Rheumatism, vol. 43, no. 7, pp. 1647–1654, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. S. C. Pflugfelder, C. A. Crouse, D. Monroy, M. Yen, M. Rowe, and S. S. Atherton, “Epstein-Barr virus and the lacrimal gland pathology of Sjögren's syndrome,” American Journal of Pathology, vol. 143, no. 1, pp. 49–64, 1993. View at Scopus
  26. J. Haddad, P. Deny, C. Munz-Gotheil et al., “Lymphocytic sialadenitis of Sjogren's syndrome associated with chronic hepatitis C virus liver disease,” The Lancet, vol. 339, no. 8789, pp. 321–323, 1992. View at Publisher · View at Google Scholar · View at Scopus
  27. J. E. Green, S. H. Hinrichs, J. Vogel, and G. Jay, “Exocrinopathy resembling Sjogren's syndrome in HTLV-1 tax transgenic mice,” Nature, vol. 341, no. 6237, pp. 72–74, 1989. View at Scopus
  28. D. L. Moyes, A. Martin, S. Sawcer et al., “The distribution of the endogenous retroviruses HERV-K113 and HERV-K115 in health and disease,” Genomics, vol. 86, no. 3, pp. 337–341, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Q. Nguyen and A. B. Peck, “Unraveling the pathophysiology of Sjogren syndrome-associated dry eye disease,” Ocular Surface, vol. 7, no. 1, pp. 11–27, 2009. View at Scopus
  30. Y. Iwakura, S. Saijo, Y. Kioka et al., “Autoimmunity induction by human T cell leukemia virus type 1 in transgenic mice that develop chronic inflammatory arthropathy resembling rheumatoid arthritis in humans,” Journal of Immunology, vol. 155, no. 3, pp. 1588–1598, 1995. View at Scopus
  31. H. Dang, A. G. Geiser, J. J. Letterio et al., “SLE-like autoantibodies and Sjogren's syndrome-like lymphoproliferation in TGF-β knockout mice,” Journal of Immunology, vol. 155, no. 6, pp. 3205–3212, 1995. View at Scopus
  32. T. Kimura, K. Suzuki, S. Inada et al., “Induction of autoimmune disease by graft-versus-host reaction across MHC class II difference: modification of the lesions in IL-6 transgenic mice,” Clinical and Experimental Immunology, vol. 95, no. 3, pp. 525–529, 1994. View at Scopus
  33. S. Makino, K. Kunimoto, and Y. Muraoka, “Breeding of a non-obese, diabetic strain of mice,” Experimental Animals, vol. 29, no. 1, pp. 1–13, 1980. View at Scopus
  34. J. F. Bach, “Insulin-dependent diabetes mellitus as an autoimmune disease,” Endocrine Reviews, vol. 15, no. 4, pp. 516–542, 1994. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Hu, Y. Nakagawa, K. R. Purushotham, and M. G. Humphreys-Beher, “Functional changes in salivary glands of autoimmune disease-prone NOD mice,” American Journal of Physiology, vol. 263, no. 4, pp. E607–E614, 1992. View at Scopus
  36. M. G. Humphreys-Beher, “Animal models for autoimmune disease-associated xerostomia and xerophthalmia,” Advances in Dental Research, vol. 10, no. 1, pp. 73–75, 1996. View at Scopus
  37. J. Brayer, J. Lowry, S. Cha et al., “Alleles from chromosomes 1 and 3 of NOD mice combine to influence Sjogren's syndrome-like autoimmune exocrinopathy,” Journal of Rheumatology, vol. 27, no. 8, pp. 1896–1904, 2000. View at Scopus
  38. W. M. Ridgway, L. B. Peterson, J. A. Todd et al., “Chapter 6 gene-gene interactions in the NOD mouse model of type 1 diabetes,” Advances in Immunology, vol. 100, pp. 151–175, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Cha, H. Nagashima, V. B. Brown, A. B. Peck, and M. G. Humphreys-Beher, “Two NOD Idd-associated intervals contribute synergistically to the development of autoimmune exocrinopathy (Sjögren's syndrome) on a healthy murine background,” Arthritis and Rheumatism, vol. 46, no. 5, pp. 1390–1398, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Q. Nguyen, M. H. Hu, YI. Li, C. Stewart, and A. B. Peck, “Salivary gland tissue expression of interleukin-23 and interleukin-17 in Sjögren's syndrome: findings in humans and mice,” Arthritis and Rheumatism, vol. 58, no. 3, pp. 734–743, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Nguyen, C. Nguyen, E. Singson et al., “Sjögren's syndrome-like disease of C57BL/6.NOD-Aec1 Aec2 mice: gender differences in keratoconjunctivitis sicca defined by a cross-over in the chromosome 3 Aec1 locus,” Scandinavian Journal of Immunology, vol. 64, no. 3, pp. 295–307, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Kong, C. P. Robinson, A. B. Peck et al., “Inappropriate apoptosis of salivary and lacrimal gland epithelium of immunodeficient NOD-scid mice,” Clinical and Experimental Rheumatology, vol. 16, no. 6, pp. 675–681, 1998. View at Scopus
  43. Y. Oppenheim, G. Kim, Y. Ban et al., “The Effects of Alpha interferon on the development of autoimmune thyroiditis in the NOD H2h4 Mouse,” Clinical and Developmental Immunology, vol. 10, no. 2–4, pp. 161–165, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. P. L. Podolin, A. Pressey, N. H. DeLarato, P. A. Fischer, L. B. Peterson, and L. S. Wicker, “I-E nonobese diabetic mice develop insulitis and diabetes,” Journal of Experimental Medicine, vol. 178, no. 3, pp. 793–803, 1993. View at Scopus
  45. C. Carnaud, B. Legrand, M. Olivi, L. B. Peterson, L. S. Wicker, and J. F. Bach, “Acquired allo-tolerance to major or minor histocompatibility antigens indifferently contributes to preventing diabetes development in non-obese diabetic (NOD) mice,” Journal of Autoimmunity, vol. 5, no. 5, pp. 591–601, 1992. View at Publisher · View at Google Scholar · View at Scopus
  46. C. P. Robinson, S. Yamachika, D. I. Bounous et al., “A novel NOD-derived murine model of primary Sjogren's syndrome,” Arthritis and Rheumatism, vol. 41, no. 1, pp. 150–156, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. H. S. Kessler, “A laboratory model for Sjögren's syndrome,” American Journal of Pathology, vol. 52, no. 3, pp. 671–685, 1968. View at Scopus
  48. R. Jonsson, A. Tarkowski, K. Backman, and L. Klareskog, “Immunohistochemical characterization of sialadenitis in NZB x NZW F mice,” Clinical Immunology and Immunopathology, vol. 42, no. 1, pp. 93–101, 1987. View at Scopus
  49. R. J. Harbeck, T. Launder, and C. Staszak, “Mononuclear cell pulmonary vasculitis in NZB/W mice. II. Immunohistochemical characterization of the infiltrating cells,” American Journal of Pathology, vol. 123, no. 2, pp. 204–211, 1986. View at Scopus
  50. C. Staszak and R. J. Harbeck, “Mononuclear-cell pulmonary vasculitis in NZB/W mice. I. Histopathologic evaluation of spontaneously occurring pulmonary infiltrates,” American Journal of Pathology, vol. 120, no. 1, pp. 99–105, 1985. View at Scopus
  51. R. Watanabe-Fukunaga, C. I. Brannan, N. G. Copeland, N. A. Jenkins, and S. Nagata, “Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis,” Nature, vol. 356, no. 6367, pp. 314–317, 1992. View at Publisher · View at Google Scholar · View at Scopus
  52. B. Andrews, R. A. Eisenberg, and A. N. Theofilopoulos, “Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains,” Journal of Experimental Medicine, vol. 148, no. 5, pp. 1198–1215, 1978. View at Scopus
  53. L. Hang, A. N. Theofilopoulos, and F. J. Dixon, “A spontaneous rheumatoid arthritis-like disease in MRL/1 mice,” Journal of Experimental Medicine, vol. 155, no. 6, pp. 1690–1701, 1982. View at Scopus
  54. R. Jonsson, A. Tarkowski, and K. Backman, “Sialadenitis in the MRL-1 mouse: morphological and immunohistochemical characterization of resident and infiltrating cells,” Immunology, vol. 60, no. 4, pp. 611–616, 1987. View at Scopus
  55. R. W. Hoffman, M. A. Alspaugh, and K. S. Waggie, “Sjogren's syndrome in MRL/l and MRL/n mice,” Arthritis and Rheumatism, vol. 27, no. 2, pp. 157–165, 1984. View at Scopus
  56. M. Wahren, K. Skarstein, I. Blange, I. Pettersson, and R. Jonsson, “MRL/lpr mice produce anti-Ro 52000 MW antibodies: detection, analysis of specificity and site of production,” Immunology, vol. 83, no. 1, pp. 9–15, 1994. View at Scopus
  57. Y. Hayashi, A. Kojima, M. Hata, and K. Hirokawa, “A new mutation involving the sublingual gland in NFS/N mice. Partially arrested mucous cell differentiation,” American Journal of Pathology, vol. 132, no. 2, pp. 187–191, 1988. View at Scopus
  58. N. Haneji, H. Hamano, K. Yanagi, and Y. Hayashi, “A new animal model for primary Sjogren's syndrome in NFS/sld mutant mice,” Journal of Immunology, vol. 153, no. 6, pp. 2769–2777, 1994. View at Scopus
  59. N. Haneji, T. Nakamura, K. Takio et al., “Identification of α-fodrin as a candidate autoantigen in primary Sjogren's syndrome,” Science, vol. 276, no. 5312, pp. 604–607, 1997. View at Publisher · View at Google Scholar · View at Scopus
  60. N. Ishimaru, T. Yoneda, K. Saegusa et al., “Severe destructive autoimmune lesions with aging in murine Sjogren's syndrome through Fas-mediated apoptosis,” American Journal of Pathology, vol. 156, no. 5, pp. 1557–1564, 2000. View at Scopus
  61. J. Saegusa and H. Kubota, “Sialadenitis in IQI/Jic Mice: a new animal model of Sjögren's syndrome,” Journal of Veterinary Medical Science, vol. 59, no. 10, pp. 897–903, 1997. View at Scopus
  62. K. Takada, M. Takiguchi, A. Konno, and M. Inaba, “Spontaneous development of multiple glandular and extraglandular lesions in aged IQI/Jic mice: a model for primary Sjögren's syndrome,” Rheumatology, vol. 43, no. 7, pp. 858–862, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. K. Takada, M. Takiguchi, A. Konno, and M. Inaba, “Autoimmunity against a tissue kallikrein in IQI/Jic mice: a model for sjögren's syndrome,” Journal of Biological Chemistry, vol. 280, no. 5, pp. 3982–3988, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. R. Tsubata, T. Tsubata, H. Hiai et al., “Autoimmune disease of exocrine organs in immunodeficient alymphoplasia mice: a spontaneous model for Sjogren's syndrome,” European Journal of Immunology, vol. 26, no. 11, pp. 2742–2748, 1996. View at Publisher · View at Google Scholar · View at Scopus
  65. D. Zucker-Franklin, “Non-HIV retroviral associations with rheumatic disease,” Current Rheumatology Reports, vol. 2, no. 2, pp. 156–162, 2000. View at Scopus
  66. H. Spits and R. De Waal Malefyt, “Functional characterization of human IL-10,” International Archives of Allergy and Immunology, vol. 99, no. 1, pp. 8–15, 1992. View at Scopus
  67. A. C. Fluckiger, I. Durand, and J. Banchereau, “Interleukin 10 induces apoptotic cell death of B-chronic lymphocytic leukemia cells,” Journal of Experimental Medicine, vol. 179, no. 1, pp. 91–99, 1994. View at Publisher · View at Google Scholar · View at Scopus
  68. I. Saito, K. Haruta, M. Shimuta et al., “Fas ligand-mediated exocrinopathy resembling Sjogren's syndrome in mice transgenic for IL-10,” Journal of Immunology, vol. 162, no. 5, pp. 2488–2494, 1999. View at Scopus
  69. H. Kimura, S. C. Tzou, R. Rocchi et al., “Interleukin (IL)-12-driven primary hypothyroidism: the contrasting roles of two Th1 cytokines (IL-12 and interferon-γ),” Endocrinology, vol. 146, no. 8, pp. 3642–3651, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. J. L. Vosters, M. A. Landek-Salgado, H. Yin et al., “Interleukin-12 induces salivary gland dysfunction in transgenic mice, providing a new model of Sjögren's syndrome,” Arthritis and Rheumatism, vol. 60, no. 12, pp. 3633–3641, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. J. L. Ambrus, J. Pippin, A. Joseph et al., “Identification of a cDNA for a human high-molecular-weight B-cell growth factor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 13, pp. 6330–6334, 1993. View at Scopus
  72. L. Shen, L. Suresh, H. Li et al., “IL-14 alpha, the nexus for primary Sjögren's disease in mice and humans,” Clinical Immunology, vol. 130, no. 3, pp. 304–312, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. L. Shen, C. Zhang, T. Wang et al., “Development of autoimmunity in IL-14α-transgenic mice,” Journal of Immunology, vol. 177, no. 8, pp. 5676–5686, 2006. View at Scopus
  74. F. MacKay and P. Schneider, “Cracking the BAFF code,” Nature Reviews Immunology, vol. 9, no. 7, pp. 491–502, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. A. G. Rolink, J. Tschopp, P. Schneider, and F. Melchers, “BAFF is a survival and maturation factor for mouse B cells,” European Journal of Immunology, vol. 32, no. 7, pp. 2004–2010, 2002. View at Publisher · View at Google Scholar · View at Scopus
  76. F. Melchers, “Actions of BAFF in B cell maturation and its effects on the development of autoimmune disease,” Annals of the Rheumatic Diseases, vol. 62, no. 2, pp. 25–27, 2003. View at Scopus
  77. F. Mackay, S. A. Woodcock, P. Lawton et al., “Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations,” Journal of Experimental Medicine, vol. 190, no. 11, pp. 1697–1710, 1999. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Groom, S. L. Kalled, A. H. Cutler et al., “Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjögren's syndrome,” Journal of Clinical Investigation, vol. 109, no. 1, pp. 59–68, 2002. View at Publisher · View at Google Scholar · View at Scopus
  79. S. D. Khare, I. Sarosi, X. Z. Xia et al., “Severe B cell hyperplasia and autoimmune disease in TALL-1 transgenic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 7, pp. 3370–3375, 2000. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. Yokota, “Id and development,” Oncogene, vol. 20, no. 58, pp. 8290–8298, 2001. View at Publisher · View at Google Scholar · View at Scopus
  81. G. Bain, C. B. Cravatt, C. Loomans, J. Alberola-Ila, S. M. Hedrick, and C. Murre, “Regulation of the helix-loop-helix proteins, E2A and Id3, by the Ras-ERK MAPK cascade,” Nature Immunology, vol. 2, no. 2, pp. 165–171, 2001. View at Publisher · View at Google Scholar · View at Scopus
  82. H. Li, M. Dai, and Y. Zhuang, “A T cell intrinsic role of Id3 in a mouse model for primary Sjögren's syndrome,” Immunity, vol. 21, no. 4, pp. 551–560, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. J. A. Deane, M. J. Trifilo, C. M. Yballe, S. Choi, T. E. Lane, and D. A. Fruman, “Enhanced T cell proliferation in mice lacking the p85β subunit of phosphoinositide 3-kinase,” Journal of Immunology, vol. 172, no. 11, pp. 6615–6625, 2004. View at Scopus
  84. J. S. Oak, J. A. Deane, M. G. Kharas et al., “Sjögren's syndrome-like disease in mice with T cells lacking class 1A phosphoinositide-3-kinase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 45, pp. 16882–16887, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Fontana, D. B. Constam, K. Frei, U. Malipiero, and H. W. Pfister, “Modulation of the immune response by transforming growth factor beta,” International Archives of Allergy and Immunology, vol. 99, no. 1, pp. 1–7, 1992. View at Scopus
  86. M. M. Shull, I. Ormsby, A. B. Kier et al., “Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease,” Nature, vol. 359, no. 6397, pp. 693–699, 1992. View at Publisher · View at Google Scholar · View at Scopus
  87. J. J. Letterio and A. B. Roberts, “Regulation of immune responses by TGF-β,” Annual Review of Immunology, vol. 16, pp. 137–161, 1998. View at Publisher · View at Google Scholar · View at Scopus
  88. G. J. Prud'homme and C. A. Piccirillo, “The inhibitory effects of transforming growth factor-beta-1 (TGF-β1) in autoimmune diseases,” Journal of Autoimmunity, vol. 14, no. 1, pp. 23–42, 2000. View at Publisher · View at Google Scholar · View at Scopus
  89. P. Schmid, D. Cox, G. Bilbe, R. Maier, and G. K. McMaster, “Differential expression of TGF β1, β2 and β3 genes during mouse embryogenesis,” Development, vol. 111, no. 1, pp. 117–130, 1991. View at Scopus
  90. A. B. Kulkarni, C. G. Huh, D. Becker et al., “Transforming growth factor β null mutation in mice causes excessive inflammatory response and early death,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 2, pp. 770–774, 1993. View at Publisher · View at Google Scholar · View at Scopus
  91. N. L. McCartney-Francis, D. E. Mizel, R. S. Redman et al., “Autoimmune Sjögren's-like lesions in salivary glands of TGF-β1-deficient mice are inhibited by adhesion-blocking peptides,” Journal of Immunology, vol. 157, no. 3, pp. 1306–1312, 1996. View at Scopus
  92. S. E. Crawford, V. Stellmach, J. E. Murphy-Ullrich et al., “Thrombospondin-1 is a major activator of TGF-β1 in vivo,” Cell, vol. 93, no. 7, pp. 1159–1170, 1998. View at Publisher · View at Google Scholar · View at Scopus
  93. S. M. F. Ribeiro, M. Poczatek, S. Schultz-Cherry, M. Villain, and J. E. Murphy-Ullrich, “The activation sequence of thrombospondin-1 interacts with the latency- associated peptide to regulate activation of latent transforming growth factor-β,” Journal of Biological Chemistry, vol. 274, no. 19, pp. 13586–13593, 1999. View at Publisher · View at Google Scholar · View at Scopus
  94. B. Turpie, T. Yoshimura, A. Gulati, J. D. Rios, D. A. Dartt, and S. Masli, “Sjögren's syndrome-like ocular surface disease in thrombospondin-1 deficient mice,” American Journal of Pathology, vol. 175, no. 3, pp. 1136–1147, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. O. K. Öz, G. Hirasawa, J. Lawson et al., “Bone phenotype of the aromatase deficient mouse,” Journal of Steroid Biochemistry and Molecular Biology, vol. 79, no. 1–5, pp. 49–59, 2001. View at Publisher · View at Google Scholar · View at Scopus
  96. G. J. Shim, M. Warner, H. J. Kim et al., “Aromatase-deficient mice spontaneously develop a lymphoproliferative autoimmune disease resembling Sjögren's syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 34, pp. 12628–12633, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. P. Dite, I. Novotny, J. Trna, and A. Sevcikova, “Autoimmune pancreatitis,” Best Practice and Research in Clinical Gastroenterology, vol. 22, no. 1, pp. 131–143, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. Y. Inagaki, Y. Jinno-Yoshida, Y. Hamasaki, and H. Ueki, “A novel autoantibody reactive with carbonic anhydrase in sera from patients with systemic lupus erythematosus and Sjogren's syndrome,” Journal of Dermatological Science, vol. 2, no. 3, pp. 147–154, 1991. View at Scopus
  99. D. Caccavo, A. Afeltra, A. Rigon et al., “Antibodies to carbonic anhydrase in patients with connective tissue diseases: relationship with lung involvement,” International Journal of Immunopathology and Pharmacology, vol. 21, no. 3, pp. 659–667, 2008. View at Scopus
  100. I. Nishimori, T. Bratanova, I. Toshkov et al., “Induction of experimental autoimmune sialoadenitis by immunization of PL/J mice with carbonic anhydrase II,” Journal of Immunology, vol. 154, no. 9, pp. 4865–4873, 1995. View at Scopus
  101. C. Scully, “Sjogren's syndrome: clinical and laboratory features, immunopathogenesis, and management,” Oral Surgery Oral Medicine and Oral Pathology, vol. 62, no. 5, pp. 510–523, 1986. View at Scopus
  102. J. Kino-Ohsaki, I. Nishimori, M. Morita et al., “Serum antibodies to carbonic anhydrase I and II in patients with idiopathic chronic pancreatitis and Sjogren's syndrome,” Gastroenterology, vol. 110, no. 5, pp. 1579–1586, 1996. View at Publisher · View at Google Scholar · View at Scopus
  103. I. Nishimori, E. Miyaji, K. Morimoto, T. Kohsaki, N. Okamoto, and S. Onishi, “Diminished cellular immune response to carbonic anhydrase II in patients with Sjögren's syndrome and idiopathic chronic pancreatitis,” Journal of the Pancreas, vol. 5, no. 4, pp. 186–192, 2004. View at Scopus
  104. J. B. Harley and K. K. Gaither, “Autoantibodies,” Rheumatic Disease Clinics of North America, vol. 14, no. 1, pp. 43–56, 1988. View at Scopus
  105. R. H. Scofield, S. Asfa, D. Obeso, R. Jonsson, and B. T. Kurien, “Immunization with short peptides from the 60-kDa Ro antigen recapitulates the serological and pathological findings as well as the salivary gland dysfunction of Sjögren's syndrome,” Journal of Immunology, vol. 175, no. 12, pp. 8409–8414, 2005. View at Scopus
  106. C. L. Keech, T. P. Gordon, and J. McCluskey, “The immune response to 52-kDa Ro and 60-kDa Ro is Linked in Experimental Autoimmunity,” Journal of Immunology, vol. 157, no. 8, pp. 3694–3699, 1996. View at Scopus
  107. B. T. Kurien, S. Asfa, C. Li, Y. Dorri, R. Jonsson, and R. H. Scofield, “Induction of oral tolerance in experimental Sjögren's syndrome autoimmunity,” Scandinavian Journal of Immunology, vol. 61, no. 5, pp. 418–425, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. P. Reynolds, T. P. Gordon, A. W. Purcell, D. C. Jackson, and J. McCluskey, “Hierarchical self-tolerance to T cell determinants within the ubiquitous nuclear self-antigen La (SS-B) permits induction of systemic autoimmunity in normal mice,” Journal of Experimental Medicine, vol. 184, no. 5, pp. 1857–1870, 1996. View at Scopus
  109. F. Topfer, T. Gordon, and J. Mccluskey, “Intra- and intermolecular spreading of autoimmunity involving the nuclear self-antigens La (SS-B) and Ro (SS-A),” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 3, pp. 875–879, 1995. View at Publisher · View at Google Scholar · View at Scopus
  110. C. E. Tseng, E. K. L. Chan, E. Miranda, M. Gross, F. Di Donato, and J. P. Buyon, “The 52-kd protein as a target of intermolecular spreading of the immune response to components of the SS-A/Ro-SS-B/La complex,” Arthritis and Rheumatism, vol. 40, no. 5, pp. 936–944, 1997. View at Scopus
  111. R. H. Scofield, K. M. Kaufman, U. Baber, J. A. James, J. B. Harley, and B. T. Kurien, “Immunization of mice with human 60-kd Ro peptides results in epitope spreading if the peptides are highly homologous between human and mouse,” Arthritis and Rheumatism, vol. 42, no. 5, pp. 1017–1024, 1999. View at Publisher · View at Google Scholar · View at Scopus
  112. L. A. Lagenaur, W. C. Manning, J. Vieira, C. L. Martens, and E. S. Mocarski, “Structure and function of the murine cytomegalovirus sgg1 gene: a determinant of viral growth in salivary gland acinar cells,” Journal of Virology, vol. 68, no. 12, pp. 7717–7727, 1994. View at Scopus
  113. H. A. McCordock, and M. G. Smith, “The visceral lesions produced in mice by the salivary gland virus of mice,” Journal of Experimental Medicine, vol. 63, no. 3, pp. 303–310, 1936. View at Scopus
  114. C. A. Mims and J. Gould, “Infection of salivary glands, kidneys, adrenals, ovaries and epithelia by murine cytomegalovirus,” Journal of Medical Microbiology, vol. 12, no. 1, pp. 113–122, 1979. View at Scopus
  115. V. J. Cavanaugh, Y. Deng, M. P. Birkenbach, J. S. Slater, and A. E. Campbell, “Vigorous innate and virus-specific cytotoxic T-lymphocyte responses to murine cytomegalovirus in the submaxillary salivary gland,” Journal of Virology, vol. 77, no. 3, pp. 1703–1717, 2003. View at Publisher · View at Google Scholar · View at Scopus
  116. D. Henson and A. J. Strano, “Mouse cytomegalovirus. Necrosis of infected and morphologically normal submaxillary gland acinar cells during termination of chronic infection,” American Journal of Pathology, vol. 68, no. 1, pp. 183–202, 1972. View at Scopus
  117. M. Fleck, E. R. Kern, T. Zhou, B. Lang, and J. D. Mountz, “Murine cytomegalovirus induces a Sjogren's syndrome-like disease in C57B1/6-lpr/lpr mice,” Arthritis and Rheumatism, vol. 41, no. 12, pp. 2175–2184, 1998. View at Publisher · View at Google Scholar · View at Scopus
  118. Y. Ohyama, V. A. Carroll, U. Deshmukh, F. Gaskin, M. G. Brown, and S. M. Fu, “Severe focal sialadenitis and dacryoadenitis in NZM2328 mice induced by MCMV: a novel model for human Sjögren's syndrome,” Journal of Immunology, vol. 177, no. 10, pp. 7391–7397, 2006. View at Scopus
  119. K. Fujiwara, N. Sakaguchi, and T. Watanabe, “Sialoadenitis in experimental graft-versus-host disease. An animal model of Sjogren's syndrome,” Laboratory Investigation, vol. 65, no. 6, pp. 710–718, 1991. View at Scopus
  120. I. Sorensen, A. P. Ussing, J. U. Prause, J. Blom, S. Larsen, and J. V. Sparck, “Histopathological changes in exocrine glands of murine transplantation chimeras. I: the development of Sjogren's syndrome-like changes secondary to GVH induced lupus syndrome,” Autoimmunity, vol. 11, no. 4, pp. 261–271, 1992. View at Scopus
  121. A. P. Ussing, J. U. Prause, I. Sorensen, S. Larsen, and J. V. Sparcke, “Histopathological changes in exocrine glands of murine transplantation chimeras. II: sjogren's syndrome-like exocrinopathy in mice without lupus nephritis. A model of primary Sjogren's syndrome,” Autoimmunity, vol. 11, no. 4, pp. 273–280, 1992. View at Scopus
  122. A. P. Ussing, H. J. J. Baelde, S. Olesen Larsen, P. Naeser, J. U. Prause, and J. A. Bruijn, “Haematopathology of 'Sjogren-mice': histopathological changes in spleens after semiallogeneic cell transfer,” Scandinavian Journal of Immunology, vol. 49, no. 6, pp. 641–648, 1999. View at Publisher · View at Google Scholar · View at Scopus
  123. S. Punekar, S. Zak, V. G. Kalter et al., “Thrombospondin 1 and its mimetic peptide ABT-510 decrease angiogenesis and inflammation in a murine model of inflammatory bowel disease,” Pathobiology, vol. 75, no. 1, pp. 9–21, 2008. View at Publisher · View at Google Scholar · View at Scopus