About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 560257, 9 pages
http://dx.doi.org/10.1155/2011/560257
Research Article

Feasibility of Treating Irradiated Bone with Intramedullary Delivered Autologous Mesenchymal Stem Cells

1Head and Neck Surgery and Dental Units, Oncologic Surgery Department, Centre Alexis Vautrin, avenue de Bourgogne, Brabois, 54511 Vandoeuvre-lès-Nancy, France
2Tumor Biology Unit, EA 4421 SIGReTO, UHP Nancy-University and Centre Alexis Vautrin, avenue de Bourgogne, Brabois, 54511 Vandoeuvre-lès- Nancy, France
3NancyClotep, INSERM U961, Faculty of Medicine, UHP Nancy-University, avenue de la forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France
4Radiotherapy Department, Centre Alexis Vautrin, avenue de Bourgogne, Brabois, 54511 Vandoeuvre-lès-Nancy, France
5Oral Surgery Department, Faculty of Dentistry, 96 avenue Mal de Lattre de Tassigny BP.50208, 54004 Nancy, France
6School of Surgery, INSERM U961, Faculty of Medicine, UHP Nancy-University, avenue de la forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France

Received 3 May 2011; Accepted 20 June 2011

Academic Editor: Ji Wu

Copyright © 2011 Bérengère Phulpin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background. We aimed to explore (i) the short-term retention of intramedullary implanted mesenchymal stem cells BMSCs and (ii) their impact on the bone blood flow and metabolism in a rat model of hindlimb irradiation. Methods. Three months after 30 Gy irradiation, fourteen animals were referred into 2 groups: a sham-operated group ( ) and a treated group ( ) in which 111In-labelled BMSCs ( cells) were injected in irradiated tibias. Bone blood flow and metabolism were assessed by serial -HDP scintigraphy and 1-wk cell retention by recordings of /111In activities. Results. The amount of intramedullary implanted BMSCs was of 70% at 2 H, 40% at 48 H, and 38% at 168 H. Bone blood flow and bone metabolism were significantly increased during the first week after cell transplantation, but these effects were found to reduce at 2-mo followup. Conclusion. Short-term cell retention produced concomitant enhancement in irradiated bone blood flow and metabolism.