About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 560257, 9 pages
http://dx.doi.org/10.1155/2011/560257
Research Article

Feasibility of Treating Irradiated Bone with Intramedullary Delivered Autologous Mesenchymal Stem Cells

1Head and Neck Surgery and Dental Units, Oncologic Surgery Department, Centre Alexis Vautrin, avenue de Bourgogne, Brabois, 54511 Vandoeuvre-lès-Nancy, France
2Tumor Biology Unit, EA 4421 SIGReTO, UHP Nancy-University and Centre Alexis Vautrin, avenue de Bourgogne, Brabois, 54511 Vandoeuvre-lès- Nancy, France
3NancyClotep, INSERM U961, Faculty of Medicine, UHP Nancy-University, avenue de la forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France
4Radiotherapy Department, Centre Alexis Vautrin, avenue de Bourgogne, Brabois, 54511 Vandoeuvre-lès-Nancy, France
5Oral Surgery Department, Faculty of Dentistry, 96 avenue Mal de Lattre de Tassigny BP.50208, 54004 Nancy, France
6School of Surgery, INSERM U961, Faculty of Medicine, UHP Nancy-University, avenue de la forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France

Received 3 May 2011; Accepted 20 June 2011

Academic Editor: Ji Wu

Copyright © 2011 Bérengère Phulpin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. B. Stone, C. N. Coleman, M. S. Anscher, and W. H. McBride, “Effects of radiation on normal tissue: consequences and mechanisms,” The Lancet Oncology, vol. 4, no. 9, pp. 529–536, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. M. A. Engleman, G. Woloschak, and W. Small Jr., “Radiation-induced skeletal injury,” Cancer Treatment and Research, vol. 128, pp. 155–169, 2006. View at Scopus
  3. T. Reuther, T. Schuster, U. Mende, and A. C. Kübler, “Osteoradionecrosis of the jaws as a side effect of radiotherapy of head and neck tumour patients—a report of a thirty year retrospective review,” International Journal of Oral and Maxillofacial Surgery, vol. 32, no. 3, pp. 289–295, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. B. A. Jereczek-Fossa and R. Orecchia, “Radiotherapy-induced mandibular bone complications,” Cancer Treatment Reviews, vol. 28, no. 1, pp. 65–74, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. B. R. Chrcanovic, P. Reher, A. A. Sousa, and M. Harris, “Osteoradionecrosis of the jaws-a current overview—part 1: physiopathology and risk and predisposing factors,” Oral and Maxillofacial Surgery, vol. 14, no. 1, pp. 3–16, 2010. View at Publisher · View at Google Scholar
  6. T. Iwase, N. Nagaya, T. Fujii et al., “Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia,” Cardiovascular Research, vol. 66, no. 3, pp. 543–551, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Tran, Y. Li, F. Maskali et al., “Short-term heart retention and distribution of intramyocardial delivered mesenchymal cells within necrotic or intact myocardium,” Cell Transplantation, vol. 15, no. 4, pp. 351–358, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Tran, S. Poussier, P. R. Franken et al., “Feasibility of in vivo dual-energy myocardial SPECT for monitoring the distribution of transplanted cells in relation to the infarction site,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 33, no. 6, pp. 709–715, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Muraglia, I. Martin, R. Cancedda, and R. Quarto, “A nude mouse model for human bone formation in unloaded conditions,” Bone, vol. 22, no. 5, pp. 131S–134S, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. He, Z. Y. Zhang, H. G. Zhu, W. Qiu, X. Jiang, and W. Guo, “Experimental study on reconstruction of segmental mandible defects using tissue engineered bone combined bone marrow stromal cells with three-dimensional tricalcium phosphate,” Journal of Craniofacial Surgery, vol. 18, no. 4, pp. 800–805, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Kudo, Y. Liu, K. Takahashi et al., “Transplantation of mesenchymal stem cells to prevent radiation-induced intestinal injury in mice,” Journal of Radiation Research, vol. 51, no. 1, pp. 73–79, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Sémont, M. Mouiseddine, A. François et al., “Mesenchymal stem cells improve small intestinal integrity through regulation of endogenous epithelial cell homeostasis,” Cell Death and Differentiation, vol. 17, no. 6, pp. 952–961, 2010. View at Publisher · View at Google Scholar
  13. D. Agay, H. Scherthan, F. Forcheron et al., “Multipotent mesenchymal stem cell grafting to treat cutaneous radiation syndrome: development of a new minipig model,” Experimental Hematology, vol. 38, no. 10, pp. 945–956, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. S. François, M. Bensidhoum, M. Mouiseddine et al., “Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage,” Stem Cells, vol. 24, no. 4, pp. 1020–1029, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. S. François, M. Mouiseddine, N. Mathieu et al., “Human mesenchymal stem cells favour healing of the cutaneous radiation syndrome in a xenogenic transplant model,” Annals of Hematology, vol. 86, no. 1, pp. 1–8, 2007. View at Publisher · View at Google Scholar
  16. K. X. Hu, Q. Y. Sun, M. Guo, and H. S. Ai, “The radiation protection and therapy effects of mesenchymal stem cells in mice with acute radiation injury,” British Journal of Radiology, vol. 83, no. 985, pp. 52–58, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Phulpin, G. Dolivet, P.-Y. Marie, et al., “Re-assessment of chronic radio-induced tissue damage in a rat hindlimb model,” Experimental and Therapeutic Medicine, vol. 1, pp. 553–560, 2010.
  18. H. Schirrmeister, A. Guhlmann, J. Kotzerke et al., “Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography,” Journal of Clinical Oncology, vol. 17, no. 8, pp. 2381–2389, 1999.
  19. N. Tran, P. R. Franken, F. Maskali et al., “Intramyocardial implantation of bone marrow-derived stem cells enhances perfusion in chronic myocardial infarction: dependency on initial perfusion depth and follow-up assessed by gated pinhole SPECT,” Journal of Nuclear Medicine, vol. 48, no. 3, pp. 405–412, 2007. View at Scopus
  20. L. Zhang, N. Tran, H. Q. Chen et al., “Time-related changes in expression of collagen types I and III and of tenascin-C in rat bone mesenchymal stem cells under co-culture with ligament fibroblasts or uniaxial stretching,” Cell and Tissue Research, vol. 332, no. 1, pp. 101–109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Hou, X. Wu, and X. Jin, “Autologous bone marrow stromal cells transplantation for the treatment of secondary arm lymphedema: a prospective controlled study in patients with breast cancer related lymphedema,” Japanese Journal of Clinical Oncology, vol. 38, no. 10, pp. 670–674, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. R. P. Coppes, A. van der Goot, and I. M. A. Lombaert, “Stem cell therapy to reduce radiation-induced normal tissue damage,” Seminars in Radiation Oncology, vol. 19, no. 2, pp. 112–121, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Bey, M. Prat, P. Duhamel et al., “Emerging therapy for improving wound repair of severe radiation burns using local bone marrow-derived stem cell administrations,” Wound Repair and Regeneration, vol. 18, no. 1, pp. 50–58, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Becker and J. Meller, “The role of nuclear medicine in infection and inflammation,” The Lancet Infectious Diseases, vol. 1, no. 5, pp. 326–333, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Blocklet, M. Toungouz, R. Kiss et al., “111In-oxine and 99mTc-HMPAO labelling of antigen-loaded dendritic cells: in vivo imaging and influence on motility and actin content,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 30, no. 3, pp. 440–447, 2003. View at Scopus
  27. N. I. Bohnen, M. Charron, J. Reyes et al., “Use of indium-111-labeled hepatocytes to determine the biodistribution of transplanted hepatocytes through portal vein infusion,” Clinical Nuclear Medicine, vol. 25, no. 6, pp. 447–450, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Takemiya, H. Kai, H. Yasukawa, N. Tahara, S. Kato, and T. Imaizumi, “Mesenchymal stem cell-based prostacyclin synthase gene therapy for pulmonary hypertension rats,” Basic Research in Cardiology, vol. 105, no. 3, pp. 409–417, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Kuyama, A. McCormack, A. J. T. George et al., “Indium-111 labelled lymphocytes: isotope distribution and cell division,” European Journal of Nuclear Medicine, vol. 24, no. 5, pp. 488–496, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Marino, C. Martinez, K. Boyd, M. Dominici, T. J. Hofmann, and E. M. Horwitz, “Transplantable marrow osteoprogenitors engraft in discrete saturable sites in the marrow microenvironment,” Experimental Hematology, vol. 36, no. 3, pp. 360–368, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. B. M. Abdallah and M. Kassem, “Human mesenchymal stem cells: from basic biology to clinical applications,” Gene Therapy, vol. 15, no. 2, pp. 109–116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Martin, S. Delanian, V. Sivan et al., “Radiation-induced superficial fibrosis and TGF-alpha 1,” Cancer/Radiothérapie, vol. 4, no. 5, pp. 369–384, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Geris, A. Gerisch, J. V. Sloten, R. Weiner, and H. V. Oosterwyck, “Angiogenesis in bone fracture healing: a bioregulatory model,” Journal of Theoretical Biology, vol. 251, no. 1, pp. 137–158, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Phulpin, P. Gangloff, N. Tran, P. Bravetti, J. L. Merlin, and G. Dolivet, “Rehabilitation of irradiated head and neck tissues by autologous fat transplantation,” Plastic and Reconstructive Surgery, vol. 123, no. 4, pp. 1187–1197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. J. J. Mendonça and P. Juiz-Lopez, “Regenerative facial reconstruction of terminal stage osteoradionecrosis and other advanced craniofacial diseases with adult cultured stem and progenitor cells,” Plastic and Reconstructive Surgery, vol. 126, no. 5, pp. 1699–1709, 2010. View at Publisher · View at Google Scholar
  36. L. Basciano, C. Nemos, B. Foliguet et al., “Long term culture of mesenchymal stem cells in hypoxia promotes a genetic program maintaining their undifferentiated and multipotent status,” BMC Cell Biology, vol. 12, article 12, 2011. View at Publisher · View at Google Scholar
  37. C. Holzwarth, M. Vaegler, F. Gieseke et al., “Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells,” BMC Cell Biology, vol. 11, article 11, 2010. View at Publisher · View at Google Scholar · View at Scopus