About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 587470, 7 pages
http://dx.doi.org/10.1155/2011/587470
Research Article

Higher Molecular Weight Polyethylene Glycol Increases Cell Proliferation While Improving Barrier Function in an In Vitro Colon Cancer Model

1Department of Medicine, University of Florida, 1600 SW Archer Road, Box 100214, Gainesville, FL 32608, USA
2Department of Biomedical Engineering, Gainesville, FL 32610, University of Florida, USA
3Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA

Received 1 July 2011; Accepted 4 August 2011

Academic Editor: Rumiana Koynova

Copyright © 2011 Shruthi Bharadwaj et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Slack, S. Hapfelmeier, B. Stecher et al., “Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism,” Science, vol. 325, no. 5940, pp. 617–620, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. P. L. M. J. Ogra, M. E. Lamm, W. Strober, J. Bienenstock, and J. McGhee, Eds., Mucosal Immunology, Academic Press, New York, NY, USA, 1999.
  4. H. G. Boman, “Innate immunity and the normal microflora,” Immunological Reviews, vol. 173, pp. 5–16, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. M. R. Wilson and B. Henderson, Eds., Bacterial Disease Mechanisms, Cambridge University Press, Cambridge, UK, 2002.
  6. C. Pagnini, V. D. Corleto, S. B. Hoang, R. Saeed, F. Cominelli, and G. D. Fave, “Commensal bacteria and “oncologic surveillance”: suggestions from an experimental model,” Journal of clinical gastroenterology, vol. 42, supplement 3, part 2, pp. S193–S196, 2008. View at Scopus
  7. L. R. Johnson, Ed., Structure and Function of Gastrointestinal Mucus, Raven Press, New York, NY, USA, 1981.
  8. H. Florey, “Mucin and the protection of the body,” Proceedings of the Royal Society of London B, vol. 143, no. 911, pp. 144–158, 1955. View at Scopus
  9. A. J. MacPherson, E. Slack, M. B. Geuking, and K. D. McCoy, “The mucosal firewalls against commensal intestinal microbes,” Seminars in Immunopathology, vol. 31, no. 2, pp. 145–149, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. L. C. Tran and J. A. Di Palma, “Lack of lasting effectiveness of PEG 3350 laxative treatment of constipation,” Journal of Clinical Gastroenterology, vol. 39, no. 7, pp. 600–602, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Pampati and R. Fogel, “Treatment options for primary constipation,” Current Treatment Options in Gastroenterology, vol. 7, no. 3, pp. 225–233, 2004. View at Scopus
  12. T. H. Chow, Y. Y. Lin, J. J. Hwang et al., “Therapeutic efficacy evaluation of 111In-labeled PEGylated liposomal vinorelbine in murine colon carcinoma with multimodalities of molecular imaging,” Journal of Nuclear Medicine, vol. 50, no. 12, pp. 2073–2081, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. D. E. Corpet and G. Parnaud, “Polyethylene-glycol, a potent suppressor of azoxymethane-induced colonic aberrant crypt foci in rats,” Carcinogenesis, vol. 20, no. 5, pp. 915–918, 1999. View at Scopus
  14. E. Dorval, J. M. Jankowski, J. P. Barbieux et al., “Polyethylene glycol and prevalence of colorectal adenomas: population-based study of 1165 patients undergoing colonoscopy,” Gastroenterologie Clinique et Biologique, vol. 30, no. 10, pp. 1196–1199, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. H. K. Roy, J. Gulizia, J. K. DiBaise et al., “Polyethylene glycol inhibits intestinal neoplasia and induces epithelial apoptosis in Apc(min) mice,” Cancer Letters, vol. 215, no. 1, pp. 35–42, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. D. E. Corpet, G. Parnaud, M. Delverdier, G. Peiffer, and S. Tache, “Consistent and fast inhibition of colon carcinogenesis by polyethylene glycol in mice and rats given various carcinogens,” Cancer Research, vol. 60, no. 12, pp. 3160–3164, 2000. View at Scopus
  17. S. Videla, A. Lugea, J. Vilaseca et al., “Polyethylene glycol enhances colonic barrier function and ameliorates experimental colitis in rats,” International Journal of Colorectal Disease, vol. 22, no. 6, pp. 571–580, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. F. K. Bedu-Addo, P. Tang, Y. Xu, and L. Huang, “Effects of polyethyleneglycol chain length and phospholipid acyl chain composition on the interaction of polyethyleneglycol-phospholipid conjugates with phospholipid: implications in liposomal drug delivery,” Pharmaceutical Research, vol. 13, no. 5, pp. 710–717, 1996. View at Scopus
  19. K. Edwards, M. Johnsson, G. Karlsson, and M. Silvander, “Effect of polyethyleneglycol-phospholipids on aggregate structure in preparations of small unilamellar liposomes,” Biophysical Journal, vol. 73, no. 1, pp. 258–266, 1997. View at Scopus
  20. M. Johnsson and K. Edwards, “Liposomes, disks, and spherical micelles: aggregate structure in mixtures of gel phase phosphatidylcholines and poly(ethylene glycol)-phospholipids,” Biophysical Journal, vol. 85, no. 6, pp. 3839–3847, 2003. View at Scopus
  21. V. Valuckaite, O. Zaborina, J. Long et al., “Oral PEG 15-20 protects the intestine against radiation: role of lipid rafts,” American Journal of Physiology, vol. 297, no. 6, pp. G1041–G1052, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Wu, O. Zaborina, A. Zaborin et al., “High-molecular-weight polyethylene glycol prevents lethal sepsis due to intestinal Pseudomonas aeruginosa,” Gastroenterology, vol. 126, no. 2, pp. 488–498, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Tlaskalova-Hogenova, R. Stepankova, T. Hudcovic, et al., “Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases,” Immunology Letters, vol. 93, no. 2-3, pp. 97–108, 2004.
  24. J. B. Kaper, “Pathogenic Escherichia coli,” International Journal of Medical Microbiology, vol. 295, no. 6-7, pp. 355–356, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. J. J. Mancuso, A. M. Larson, T. G. Wensel, and P. Saggau, “Multiphoton adaptation of a commercial low-cost confocal microscope for live tissue imaging,” Journal of Biomedical Optics, vol. 14, no. 3, article 034048, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Schutz, D. Schneidenbach, G. Aust, A. Tannapfel, M. Steinert, and C. Wittekind, “Differential expression and activity status of MMP-1, MMP-2 and MMP-9 in tumor and stromal cells of squamous cell carcinomas of the lung,” Tumor Biology, vol. 23, no. 3, pp. 179–184, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Goverman, L. A. Schick, and J. Newman, “The bundling of actin with polyethylene glycol 8000 in the presence and absence of gelsolin,” Biophysical Journal, vol. 71, no. 3, pp. 1485–1492, 1996. View at Scopus
  28. D. Drenckhahn and T. D. Pollard, “Elongation of actin filaments is a diffusion-limited reaction at the barbed end and is accelerated by inert macromolecules,” Journal of Biological Chemistry, vol. 261, no. 27, pp. 12754–12758, 1986. View at Scopus
  29. A. U. Jawhari, A. Buda, M. Jenkins et al., “Fascin, an actin-bundling protein, modulates colonic epithelial cell invasiveness and differentiation in vitro,” American Journal of Pathology, vol. 162, no. 1, pp. 69–80, 2003. View at Scopus
  30. E. Long, A. V. Capuco, D. L. Wood et al., “Escherichia coli induces apoptosis and proliferation of mammary cells,” Cell Death and Differentiation, vol. 8, no. 8, pp. 808–816, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Shankar, S. Krishnan, V. Malladi, A. Balakrishnan, and P. H. Williams, “Outer membrane proteins of wild-type and intimin-deficient enteropathogenic Escherichia coli induce Hep-2 cell death through intrinsic and extrinsic pathways of apoptosis,” International Journal of Medical Microbiology, vol. 299, no. 2, pp. 121–132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. V. K. Viswanathan, A. Weflen, A. Koutsouris, J. L. Roxas, and G. Hecht, “Enteropathogenic E. coli-induced barrier function alteration is not a consequence of host cell apoptosis,” American Journal of Physiology, vol. 294, no. 5, pp. G1165–G1170, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. P. M. S. Figueiredo, M. T. Furumura, L. Aidar-Ugrinovich et al., “Induction of apoptosis in Caco-2 and HT-29 human intestinal epithelial cells by enterohemolysin produced by classic enteropathogenic Escherichia coli,” Letters in Applied Microbiology, vol. 45, no. 4, pp. 358–363, 2007. View at Publisher · View at Google Scholar · View at Scopus