About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 597145, 7 pages
http://dx.doi.org/10.1155/2011/597145
Research Article

Next-Generation Sequencing of MicroRNAs for Breast Cancer Detection

1State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Sipailou 2, Nanjing 210096, China
2Department of Hygienic Analysis and Detection, School of Public Health, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China

Received 20 January 2011; Revised 14 March 2011; Accepted 24 March 2011

Academic Editor: Ayman El-Kadi

Copyright © 2011 Qian Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Lu, G. Getz, E. A. Miska et al., “MicroRNA expression profiles classify human cancers,” Nature, vol. 435, no. 7043, pp. 834–838, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. R. I. Gregory and R. Shiekhattar, “MicroRNA biogenesis and cancer,” Cancer Research, vol. 65, no. 9, pp. 3509–3512, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. G. A. Calin and C. M. Croce, “MicroRNA signatures in human cancers,” Nature Reviews Cancer, vol. 6, no. 11, pp. 857–866, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Volinia, G. A. Calin, C. G. Liu et al., “A microRNA expression signature of human solid tumors defines cancer gene targets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 7, pp. 2257–2261, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Eder and M. Scherr, “MicroRNA and lung cancer,” The New England Journal of Medicine, vol. 352, no. 23, pp. 2446–2448, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Roessler, A. Budhu, and X. W. Wang, “Future of molecular profiling of human hepatocellular carcinoma,” Future Oncology, vol. 3, no. 4, pp. 429–439, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. V. Iorio, R. Visone, G. Di Leva et al., “MicroRNA signatures in human ovarian cancer,” Cancer Research, vol. 67, no. 18, pp. 8699–8707, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. C. H. Lawrie, S. Gal, H. M. Dunlop et al., “Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma,” British Journal of Haematology, vol. 141, no. 5, pp. 672–675, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. S. S. Chim, T. K. Shing, E. C. Hung et al., “Detection and characterization of placental microRNAs in maternal plasma,” Clinical Chemistry, vol. 54, no. 3, pp. 482–490, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. P. S. Mitchell, R. K. Parkin, E. M. Kroh et al., “Circulating microRNAs as stable blood-based markers for cancer detection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 30, pp. 10513–10518, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Gilad, E. Meiri, Y. Yogev et al., “Serum microRNAs are promising novel biomarkers,” PLoS ONE, vol. 3, no. 9, Article ID e3148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Chen, Y. Ba, L. Ma et al., “Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases,” Cell Research, vol. 18, no. 10, pp. 997–1006, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. D. D. Taylor and C. Gercel-Taylor, “MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer,” Gynecologic Oncology, vol. 110, no. 1, pp. 13–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. E. K. Ng, W. W. Chong, H. Jin et al., “Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening,” Gut, vol. 58, no. 10, pp. 1375–1381, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT Method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. M. L. Si, S. Zhu, H. Wu, Z. Lu, F. Wu, and Y. Y. Mo, “miR-21-mediated tumor growth,” Oncogene, vol. 26, no. 19, pp. 2799–2803, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Zhu, H. Wu, F. Wu, D. Nie, S. Sheng, and Y. Y. Mo, “MicroRNA-21 targets tumor suppressor genes in invasion and metastasis,” Cell Research, vol. 18, no. 3, pp. 350–359, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Zhu, M. L. Si, H. Wu, and Y. Y. Mo, “MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1),” Journal of Biological Chemistry, vol. 282, no. 19, pp. 14328–14336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. Lu, M. Liu, V. Stribinskis et al., “MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene,” Oncogene, vol. 27, no. 31, pp. 4373–4379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. L. B. Frankel, N. R. Christoffersen, A. Jacobsen, M. Lindow, A. Krogh, and A. H. Lund, “Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells,” Journal of Biological Chemistry, vol. 283, no. 2, pp. 1026–1033, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. C. A. Gebeshuber, K. Zatloukal, and J. Martinez, “miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis,” EMBO Reports, vol. 10, no. 4, pp. 400–405, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Meng, R. Henson, H. Wehbe-Janek, K. Ghoshal, S. T. Jacob, and T. Patel, “MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer,” Gastroenterology, vol. 133, no. 2, pp. 647–658, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Hu, X. Chen, Y. Zhao et al., “Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 28, no. 10, pp. 1721–1726, 2010. View at Scopus
  24. Y. Qi, J. Tu, L. Cui, et al., “High-throughput sequencing of microRNAs in adenovirus type 3 infected human laryngeal epithelial cells,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 915980, 2010.
  25. J. H. Schulte, T. Marschall, M. Martin, et al., “Deep sequencing reveals differential expression of microRNAs in favorable versus unfavorable neuroblastoma,” Nucleic Acids Research, vol. 38, no. 17, pp. 5919–5928, 2010.
  26. W. Zhu, W. Qin, U. Atasoy, and E. R. Sauter, “Circulating microRNAs in breast cancer and healthy subjects,” BMC Research Notes, vol. 2, Article ID 89, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Wang, Z. Zheng, J. Guo, and X. Ding, “Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor,” Gynecologic Oncology, vol. 119, no. 3, pp. 586–593, 2010.