About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 651627, 10 pages
http://dx.doi.org/10.1155/2011/651627
Research Article

Synergistic Effects between Phosphorylation of Phospholamban and Troponin I Promote Relaxation at Higher Heart Rate

Department of Aerospace Physiology, Fourth Military Medical University, 169# Changlexi Road, Xi'an 710032, China

Received 13 February 2011; Accepted 17 June 2011

Academic Editor: Xupei Huang

Copyright © 2011 Lin Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Huke and D. M. Bers, “Temporal dissociation of frequency-dependent acceleration of relaxation and protein phosphorylation by CaMKII,” Journal of Molecular and Cellular Cardiology, vol. 42, no. 3, pp. 590–599, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. P. de Koninck and H. Schulman, “Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations,” Science, vol. 279, no. 5348, pp. 227–230, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Zhang, S. Miyamoto, and J. H. Brown, “Cardiomyocyte calcium and calcium/calmodulin-dependent protein kinase II: friends or foes?” Recent Progress in Hormone Research, vol. 59, pp. 141–168, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. D. R. Witcher, R. J. Kovacs, H. Schulman, D. C. Cefali, and L. R. Jones, “Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity,” Journal of Biological Chemistry, vol. 266, no. 17, pp. 11144–11152, 1991. View at Scopus
  5. A. Xu, C. Hawkins, and N. Narayanan, “Phosphorylation and activation of the Ca(2+)-pumping ATPase of cardiac sarcoplasmic reticulum by Ca2+/calmodulin-dependent protein kinase,” Journal of Biological Chemistry, vol. 268, no. 12, pp. 8394–8397, 1993. View at Scopus
  6. H. K. Simmerman, J. H. Collins, and J. L. Theibert, “Sequence analysis of phospholamban. Identification of phosphorylation sites and two major structural domains,” Journal of Biological Chemistry, vol. 261, no. 28, pp. 13333–13341, 1986. View at Scopus
  7. I. Dzhura, Y. Wu, R. J. Colbran, J. R. Balser, and M. E. Anderson, “Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels,” Nature Cell Biology, vol. 2, no. 3, pp. 173–177, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Wu, J. Temple, R. Zhang et al., “Calmodulin kinase II and arrhythmias in a mouse model of cardiac hypertrophy,” Circulation, vol. 106, no. 10, pp. 1288–1293, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. C. A. Valverde, C. Mundina-Weilenmann, M. Said et al., “Frequency-dependent acceleration of relaxation in mammalian heart: a property not relying on phospholamban and SERCA2a phosphorylation,” Journal of Physiology, vol. 562, no. 3, pp. 801–813, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Catalucci, M. V. Latronico, M. Ceci et al., “Akt increases sarcoplasmic reticulum Ca2+ cycling by direct phosphorylation of phospholamban at Thr17,” Journal of Biological Chemistry, vol. 284, no. 41, pp. 28180–28187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. A. Werdich, E. A. Lima, I. Dzhura et al., “Differential effects of phospholamban and Ca2+/calmodulin- dependent kinase II on [Ca2+]i transients in cardiac myocytes at physiological stimulation frequencies,” American Journal of Physiology, vol. 294, no. 5, pp. H2352–H2362, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. M. MacDonnell, G. Garcia-Rivas, J. A. Scherman et al., “Adrenergic regulation of cardiac contractility does not involve phosphorylation of the cardiac ryanodine receptor at serine 2808,” Circulation Research, vol. 102, no. 8, pp. E65–E72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. E. Stelzer, J. R. Patel, J. W. Walker, and R. L. Moss, “Differential roles of cardiac myosin-binding protein C and cardiac troponin I in the myofibrillar force responses to protein kinase A phosphorylation,” Circulation Research, vol. 101, no. 5, pp. 503–511, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Sadayappan, J. Gulick, R. Klevitsky et al., “Cardiac myosin binding protein-C phosphorylation in a β-myosin heavy chain background,” Circulation, vol. 119, no. 9, pp. 1253–1262, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Sadayappan, H. Osinska, R. Klevitsky et al., “Cardiac myosin binding protein c phosphorylation is cardioprotective,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 45, pp. 16918–16923, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Sakthivel, N. L. Finley, P. R. Rosevear et al., “In vivo and in vitro analysis of cardiac troponin I phosphorylation,” Journal of Biological Chemistry, vol. 280, no. 1, pp. 703–714, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. J. C. Barbato, Q. Q. Huang, M. M. Hossain, M. Bond, and J. P. Jin, “Proteolytic N-terminal truncation of cardiac troponin I enhances ventricular diastolic function,” Journal of Biological Chemistry, vol. 280, no. 8, pp. 6602–6609, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Y. Wang, B. Jiao, W. G. Guo, H. L. Che, and Z. B. Yu, “Excessive thyroxine enhances susceptibility to apoptosis and decreases contractility of cardiomyocytes,” Molecular and Cellular Endocrinology, vol. 320, no. 1-2, pp. 67–75, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Desantiago, L. S. Maier, and D. M. Bers, “Frequency-dependent acceleration of relaxation in the heart depends on CamKII, but not phospholamban,” Journal of Molecular and Cellular Cardiology, vol. 34, no. 8, pp. 975–984, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Li, J. Desantiago, G. Chu, E. G. Kranias, and D. M. Bers, “Phosphorylation of phospholamban and troponin I in β-adrenergic-induced acceleration of cardiac relaxation,” American Journal of Physiology, vol. 278, no. 3, pp. H769–H779, 2000. View at Scopus
  21. E. C. Johns, S. J. Simnett, I. P. Mulligan, and C. C. Ashley, “Troponin I phosphorylation does not increase the rate of relaxation following laser flash photolysis of diazo-2 in guinea-pig skinned trabeculae,” Pflugers Archiv, vol. 433, no. 6, pp. 842–844, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. R. C. Fentzke, S. H. Buck, J. R. Patel et al., “Impaired cardiomyocyte relaxation and diastolic function in transgenic mice expressing slow skeletal troponin I in the heart,” Journal of Physiology, vol. 517, no. 1, pp. 143–157, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. J. C. Kentish, D. T. McCloskey, J. Layland et al., “Phosphorylation of troponin I by protein kinase A accelerates relaxation and crossbridge cycle kinetics in mouse ventricular muscle,” Circulation Research, vol. 88, no. 10, pp. 1059–1065, 2001. View at Scopus
  24. B. M. Wolska, G. M. Arteaga, J. R. Pena et al., “Expression of slow skeletal troponin I in hearts of phospholamban knockout mice alters the relaxant effect of β-adrenergic stimulation,” Circulation Research, vol. 90, no. 8, pp. 882–888, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. K. D. Varian and P. M. L. Janssen, “Frequency-dependent acceleration of relaxation involves decreased myofilament calcium sensitivity,” American Journal of Physiology, vol. 292, no. 5, pp. H2212–H2219, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Takimoto, D. G. Soergel, P. M. L. Janssen, L. B. Stull, D. A. Kass, and A. M. Murphy, “Frequency- and afterload-dependent cardiac modulation in vivo by troponin I with constitutively active protein kinase a phosphorylation sites,” Circulation Research, vol. 94, no. 4, pp. 496–504, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Kuschel, P. Karczewski, P. Hempel, W. -P. Schlegel, E. -G. Krause, and S. Bartel, “Ser16 prevails over Thr17 phospholamban phosphorylation in the β- adrenergic regulation of ardiac relaxation,” American Journal of Physiology, vol. 276, no. 5, pp. H1625–H1633, 1999.