About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 685328, 10 pages
http://dx.doi.org/10.1155/2011/685328
Review Article

Physiology and Pathophysiology of CLC-1: Mechanisms of a Chloride Channel Disease, Myotonia

1Department of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
2Center for Neuroscience and Department of Neurology, University of California, Davis, CA 95618, USA

Received 26 April 2011; Revised 18 July 2011; Accepted 10 September 2011

Academic Editor: Lars Larsson

Copyright © 2011 Chih-Yung Tang and Tsung-Yu Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Russell, “Sodium-potassium-chloride cotransport,” Physiological Reviews, vol. 80, no. 1, pp. 211–276, 2000. View at Scopus
  2. N. C. Adragna, M. di Fulvio, and P. K. Lauf, “Regulation of K-Cl cotransport: from function to genes,” Journal of Membrane Biology, vol. 201, no. 3, pp. 109–137, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Gamba, “Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters,” Physiological Reviews, vol. 85, no. 2, pp. 423–493, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. T. J. Jentsch, T. Maritzen, and A. A. Zdebik, “Chloride channel diseases resulting from impaired transepithelial transport or vesicular function,” Journal of Clinical Investigation, vol. 115, no. 8, pp. 2039–2046, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. A. Payne, C. Rivera, J. Voipio, and K. Kaila, “Cation-chloride co-transporters in neuronal communication, development and trauma,” Trends in Neurosciences, vol. 26, no. 4, pp. 199–206, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. A. L. Hodgkin and P. Horowicz, “The influence of potassium and chloride ions on the membrane potential of single muscle fibres,” Journal of Physiology, vol. 148, pp. 127–160, 1959. View at Scopus
  7. R. H. Adrian, “Potassium chloride movement and the membrane potential of frog muscle,” Journal of Physiology, vol. 151, pp. 154–185, 1960. View at Scopus
  8. R. H. Adrian, “Internal chloride concentration and chloride efflux of frog muscle,” Journal of Physiology, vol. 156, pp. 623–632, 1961. View at Scopus
  9. A. F. Dulhunty, “The dependence of membrane potential on extracellular chloride concentration in mammalian skeletal muscle fibres,” Journal of Physiology, vol. 276, pp. 67–82, 1978. View at Scopus
  10. R. J. G. Foppen, H. G. J. van Mil, and J. S. van Heukelom, “Effects of chloride transport on bistable behaviour of the membrane potential in mouse skeletal muscle,” Journal of Physiology, vol. 542, no. 1, pp. 181–191, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. R. J. G. Foppen, “In skeletal muscle the relaxation of the resting membrane potential induced by K(+) permeability changes depends on Cl(-) transport,” Pflugers Archiv, vol. 447, no. 4, pp. 416–425, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Gallaher, M. Bier, and J. S. van Heukelom, “The role of chloride transport in the control of the membrane potential in skeletal muscle—theory and experiment,” Biophysical Chemistry, vol. 143, no. 1-2, pp. 18–25, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. C. C. Aickin, W. J. Betz, and G. L. Harris, “Intracellular chloride and the mechanism for its accumulation in rat lumbrical muscle,” Journal of Physiology, vol. 411, pp. 437–455, 1989. View at Scopus
  14. S. H. Bryant and A. Morales-Aguilera, “Chloride conductance in normal and myotonic muscle fibres and the action of monocarboxylic aromatic acids,” Journal of Physiology, vol. 219, no. 2, pp. 367–383, 1971. View at Scopus
  15. A. F. Dulhunty, “Distribution of potassium and chloride permeability over the surface and T-tubule membranes of mammalian skeletal muscle,” Journal of Membrane Biology, vol. 45, no. 3-4, pp. 293–310, 1979. View at Scopus
  16. A. H. Bretag, “Muscle chloride channels,” Physiological Reviews, vol. 67, no. 2, pp. 618–724, 1987. View at Scopus
  17. P. T. Palade and R. L. Barchi, “Characteristics of the chloride conductance in muscle fibers of the rat diaphragm,” Journal of General Physiology, vol. 69, no. 3, pp. 325–342, 1977. View at Scopus
  18. J. R. Coonan and G. D. Lamb, “Effect of transverse-tubular chloride conductance on excitability in skinned skeletal muscle fibres of rat and toad,” Journal of Physiology, vol. 509, part 2, pp. 551–564, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. T. L. Dutka, R. M. Murphy, D. G. Stephenson, and G. D. Lamb, “Chloride conductance in the transverse tubular system of rat skeletal muscle fibres: importance in excitation-contraction coupling and fatigue,” Journal of Physiology, vol. 586, no. 3, pp. 875–887, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. T. H. Pedersen, O. B. Nielsen, G. D. Lamb, and D. G. Stephenson, “Intracellular acidosis enhances the excitability of working muscle,” Science, vol. 305, no. 5687, pp. 1144–1147, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. S. P. Cairns and M. I. Lindinger, “Do multiple ionic interactions contribute to skeletal muscle fatigue?” Journal of Physiology, vol. 586, no. 17, pp. 4039–4054, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. T. J. Jentsch, V. Stein, F. Weinreich, and A. A. Zdebik, “Molecular structure and physiological function of chloride channels,” Physiological Reviews, vol. 82, no. 2, pp. 503–568, 2002. View at Scopus
  23. T. Y. Chen, “Structure and function of CLC channels,” Annual Review of Physiology, vol. 67, pp. 809–839, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. T. J. Jentsch, M. Poët, J. C. Fuhrmann, and A. A. Zdebik, “Physiological functions of CLC Cl- channels gleaned from human genetic disease and mouse models,” Annual Review of Physiology, vol. 67, pp. 779–807, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Accardi and C. Miller, “Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels,” Nature, vol. 427, no. 6977, pp. 803–807, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Picollo and M. Pusch, “Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5,” Nature, vol. 436, no. 7049, pp. 420–423, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. O. Scheel, A. A. Zdebik, S. Lourdel, and T. J. Jentsch, “Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins,” Nature, vol. 436, no. 7049, pp. 424–427, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. O. Devuyst and W. B. Guggino, “Chloride channels in the kidney: lessons learned from knockout animals,” American Journal of Physiology—Renal Physiology, vol. 283, no. 6, pp. F1176–F1191, 2002. View at Scopus
  29. J. Cuppoletti, K. P. Tewari, A. M. Sherry, and D. H. Malinowska, “Activation of human ClC-2 Cl- channels: implications for cystic fibrosis,” Clinical and Experimental Pharmacology and Physiology, vol. 27, no. 11, pp. 896–900, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Strange, “Of mice and worms: novel insights into CIC-2 anion channel physiology,” News in Physiological Sciences, vol. 17, no. 1, pp. 11–16, 2002. View at Scopus
  31. A. Thiemann, S. Grunder, M. Pusch, and T. J. Jentsch, “A chloride channel widely expressed in epithelial and non-epithelial cells,” Nature, vol. 356, no. 6364, pp. 57–60, 1992. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Steinmeyer, C. Ortland, and T. J. Jentsch, “Primary structure and functional expression of a developmentally regulated skeletal muscle chloride channel,” Nature, vol. 354, no. 6351, pp. 301–304, 1991. View at Publisher · View at Google Scholar · View at Scopus
  33. X. D. Zhang, S. Morishima, Y. Ando-Akatsuka et al., “Expression of novel isoforms of the ClC-1 chloride channel, in astrocytic glial cells in vitro,” GLIA, vol. 47, no. 1, pp. 46–57, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Steinmeyer, R. Klocke, C. Ortland et al., “Inactivation of muscle chloride channel by transposon insertion in myotonic mice,” Nature, vol. 354, no. 6351, pp. 304–308, 1991. View at Publisher · View at Google Scholar · View at Scopus
  35. M. C. Koch, K. Steinmeyer, C. Lorenz et al., “The skeletal muscle chloride channel in dominant and recessive human myotonia,” Science, vol. 257, no. 5071, pp. 797–800, 1992. View at Scopus
  36. M. Gronemeier, A. Condie, J. Prosser, K. Steinmeyer, T. J. Jentsch, and H. Jockusch, “Nonsense and missense mutations in the muscular chloride channel gene Clc- 1 of myotonic mice,” Journal of Biological Chemistry, vol. 269, no. 8, pp. 5963–5967, 1994. View at Scopus
  37. C. L. Beck, C. Fahlke, and A. L. George Jr., “Molecular basis for decreased muscle chloride conductance in the myotonic goat,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 20, pp. 11248–11252, 1996. View at Publisher · View at Google Scholar · View at Scopus
  38. T. H. Rhodes, C. H. Vite, U. Giger, D. F. Patterson, C. Fahlke, and A. L. George Jr., “A missense mutation in canine ClC-1 causes recessive myotonia congenita in the dog,” FEBS Letters, vol. 456, no. 1, pp. 54–58, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Fahlke, R. Rüdel, N. Mitrovic, M. Zhou, and A. L. George Jr., “An aspartic acid residue important for voltage-dependent gating of human muscle chloride channels,” Neuron, vol. 15, no. 2, pp. 463–472, 1995. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Miller, “Open-state substructure of single chloride channels from Torpedo electroplax,” Philosophical Transactions of the Royal Society of London B, vol. 299, no. 1097, pp. 401–411, 1982. View at Scopus
  41. C. Miller and M. M. White, “Dimeric structure of single chloride channels from Torpedo electroplax,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 9, pp. 2772–2775, 1984. View at Scopus
  42. C. Saviane, F. Conti, and M. Pusch, “The muscle chloride channel ClC-1 has a double-barreled appearance that is differentially affected in dominant and recessive myotonia,” Journal of General Physiology, vol. 113, no. 3, pp. 457–468, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Dutzler, E. B. Campbell, M. Cadene, B. T. Chait, and R. MacKinnon, “X-ray structure of a CIC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity,” Nature, vol. 415, no. 6869, pp. 287–294, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Dutzler, E. B. Campbell, and R. MacKinnon, “Gating the selectivity filter in ClC chloride channels,” Science, vol. 300, no. 5616, pp. 108–112, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Y. Chen and C. Miller, “Nonequilibrium gating and voltage dependence of the ClC-0 Cl- channel,” Journal of General Physiology, vol. 108, no. 4, pp. 237–250, 1996. View at Scopus
  46. G. Y. Rychkov, M. Pusch, D. S. J. Astill, M. L. Roberts, T. J. Jentsch, and A. H. Bretag, “Concentration and pH dependence of skeletal muscle chloride channel C1C-1,” Journal of Physiology, vol. 497, part 2, pp. 423–435, 1996. View at Scopus
  47. M. F. Chen and T. Y. Chen, “Different fast-gate regulation by external Cl(-) and H(+) of the muscle-type ClC chloride channels,” Journal of General Physiology, vol. 118, no. 1, pp. 23–32, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Miller, “ClC chloride channels viewed through a transporter lens,” Nature, vol. 440, no. 7083, pp. 484–489, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Feng, E. B. Campbell, Y. Hsiung, and R. MacKinnon, “Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle,” Science, vol. 330, no. 6004, pp. 635–641, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. W. Hanke and C. Miller, “Single chloride channels from Torpedo electroplax. Activation by protons,” Journal of General Physiology, vol. 82, no. 1, pp. 25–45, 1983. View at Scopus
  51. Y. W. Lin, C. W. Lin, and T. Y. Chen, “Elimination of the slow gating of C1C-0 chloride channel by a point mutation,” Journal of General Physiology, vol. 114, no. 1, pp. 1–12, 1999. View at Scopus
  52. B. Hille, Ion Channels of Excitable Membranes, Sinauer Associates, Inc., Sunderland, Mass, USA, 2001.
  53. M. Pusch, K. Steinmeyer, M. C. Koch, and T. J. Jentsch, “Mutations in dominant human myotonia congenita drastically alter the voltage dependence of the CIC-1 chloride channel,” Neuron, vol. 15, no. 6, pp. 1455–1463, 1995. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Meyer and R. Dutzler, “Crystal structure of the cytoplasmic domain of the chloride channel ClC-0,” Structure, vol. 14, no. 2, pp. 299–307, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Meyer, S. Savaresi, I. C. Forster, and R. Dutzler, “Nucleotide recognition by the cytoplasmic domain of the human chloride transporter ClC-5,” Nature Structural and Molecular Biology, vol. 14, no. 1, pp. 60–67, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Markovic and R. Dutzler, “The structure of the cytoplasmic domain of the chloride channel ClC-Ka reveals a conserved interaction interface,” Structure, vol. 15, no. 6, pp. 715–725, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Y. Chen, “Coupling gating with ion permeation in ClC channels,” Science's STKE, vol. 2003, no. 188, p. e23, 2003. View at Scopus
  58. R. Dutzler, “The structural basis of ClC chloride channel function,” Trends in Neurosciences, vol. 27, no. 6, pp. 315–320, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Dutzler, “Structural basis for ion conduction and gating in ClC chloride channels,” FEBS Letters, vol. 564, no. 3, pp. 229–233, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. B. Bennetts, M. W. Parker, and B. A. Cromer, “Inhibition of skeletal muscle ClC-1 chloride channels by low intracellular pH and ATP,” Journal of Biological Chemistry, vol. 282, no. 45, pp. 32780–32791, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Y. Tseng, B. Bennetts, and T. Y. Chen, “Cytoplasmic ATP inhibition of CLC-1 is enhanced by low pH,” Journal of General Physiology, vol. 130, no. 2, pp. 217–221, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. X. D. Zhang, P. Y. Tseng, and T. Y. Chen, “ATP inhibition of CLC-1 is controlled by oxidation and reduction,” Journal of General Physiology, vol. 132, no. 4, pp. 421–428, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. E. A. Bykova, X. D. Zhang, T. Y. Chen, and J. Zheng, “Large movement in the C terminus of CLC-0 chloride channel during slow gating,” Nature Structural and Molecular Biology, vol. 13, no. 12, pp. 1115–1119, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. C. Karatzaferi, A. de Haan, R. A. Ferguson, W. van Mechelen, and A. J. Sargeant, “Phosphocreatine and ATP content in human single muscle fibres before and after maximum dynamic exercise,” Pflugers Archiv, vol. 442, no. 3, pp. 467–474, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. B. Bennetts, G. Y. Rychkov, H. L. Ng et al., “Cytoplasmic ATP-sensing domains regulate gating of skeletal muscle ClC-1 chloride channels,” Journal of Biological Chemistry, vol. 280, no. 37, pp. 32452–32458, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Roos and W. F. Boron, “Intracellular pH transients in rat diaphragm muscle measured with DMO,” American Journal of Physiology, vol. 235, no. 1, pp. C49–C54, 1978. View at Scopus
  67. J. R. Wilson, K. K. McCully, D. M. Mancini, B. Boden, and B. Chance, “Relationship of muscular fatigue to pH and diprotonated P(i) in humans: a 31P-NMR study,” Journal of Applied Physiology, vol. 64, no. 6, pp. 2333–2339, 1988. View at Scopus
  68. K. Jurkat-Rott, H. Lerche, and F. Lehmann-Horn, “Skeletal muscle channelopathies,” Journal of Neurology, vol. 249, no. 11, pp. 1493–1502, 2002. View at Publisher · View at Google Scholar · View at Scopus
  69. R. J. Lipicky and S. H. Bryant, “Sodium, potassium, and chloride fluxes in intercostal muscle from normal goats and goats with hereditary myotonia,” Journal of General Physiology, vol. 50, no. 1, pp. 89–111, 1966. View at Scopus
  70. R. H. Adrian and S. H. Bryant, “On the repetitive discharge in myotonic muscle fibres,” Journal of Physiology, vol. 240, no. 2, pp. 505–515, 1974. View at Scopus
  71. R. H. Adrian and M. W. Marshall, “Action potentials reconstructed in normal and myotonic muscle fibres,” Journal of Physiology, vol. 258, no. 1, pp. 125–143, 1976. View at Scopus
  72. R. J. Lipicky, S. H. Bryant, and J. H. Salmon, “Cable parameters, sodium, potassium, chloride, and water content, and potassium efflux in isolated external intercostal muscle of normal volunteers and patients with myotonia congenita,” Journal of Clinical Investigation, vol. 50, no. 10, pp. 2091–2103, 1971. View at Scopus
  73. L. J. Ptacek, K. J. Johnson, and R. C. Griggs, “Genetics and physiology of the myotonic muscle disorders,” The New England Journal of Medicine, vol. 328, no. 7, pp. 482–489, 1993. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Pusch, “Myotonia caused by mutations in the muscle chloride channel gene CLCN1,” Human Mutation, vol. 19, no. 4, pp. 423–434, 2002. View at Publisher · View at Google Scholar · View at Scopus
  75. E. Colding-Jørgensen, “Phenotypic variability in myotonia congenita,” Muscle and Nerve, vol. 32, no. 1, pp. 19–34, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. C. Lossin and A. L. George Jr., “Myotonia congenita,” Advances in Genetics, vol. 63, pp. 25–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. C. Kubisch, T. Schmidt-Rose, B. Fontaine, A. H. Bretag, and T. J. Jentsch, “CIC-1 chloride channel mutations in myotonia congenita: variable penetrance of mutations shifting the voltage dependence,” Human Molecular Genetics, vol. 7, no. 11, pp. 1753–1760, 1998. View at Publisher · View at Google Scholar · View at Scopus
  78. D. Fialho, S. Schorge, U. Pucovska et al., “Chloride channel myotonia: exon 8 hot-spot for dominant-negative interactions,” Brain, vol. 130, no. 12, pp. 3265–3274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Accardi, L. Ferrera, and M. Pusch, “Drastic reduction of the slow gate of human muscle chloride channel (CIC-1) by mutation C277S,” Journal of Physiology, vol. 534, no. 3, pp. 745–752, 2001. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Duffield, G. Rychkov, A. Bretag, and M. Roberts, “Involvement of helices at the dimer interface in ClC-1 common gating,” Journal of General Physiology, vol. 121, no. 2, pp. 149–161, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. F. Weinreich and T. J. Jentsch, “Pores formed by single subunits in mixed dimers of different CLC chloride channels,” Journal of Biological Chemistry, vol. 276, no. 4, pp. 2347–2353, 2001. View at Publisher · View at Google Scholar · View at Scopus
  82. B. Wollnik, C. Kubisch, K. Steinmeyer, and M. Pusch, “Identification of functionally important regions of the muscular chloride channel CIC-1 by analysis of recessive and dominant myotonic mutations,” Human Molecular Genetics, vol. 6, no. 5, pp. 805–811, 1997. View at Scopus
  83. M. J. Macías, O. Teijido, G. Zifarelli et al., “Myotonia-related mutations in the distal C-terminus of ClC-1 and ClC-0 chloride channels affect the structure of a poly-proline helix,” Biochemical Journal, vol. 403, no. 1, pp. 79–87, 2007. View at Publisher · View at Google Scholar
  84. F. F. Wu, A. Ryan, J. Devaney et al., “Novel CLCN1 mutations with unique clinical and electrophysiological consequences,” Brain, vol. 125, no. 11, pp. 2392–2407, 2002. View at Scopus
  85. J. Zhang, S. Bendahhou, M. C. Sanguinetti, and L. J. Ptáček, “Functional consequences of chloride channel gene (CLCN1) mutations causing myotonia congenita,” Neurology, vol. 54, no. 4, pp. 937–942, 2000. View at Scopus
  86. S. B. Jou, L. I. Chang, H. Pan, P. R. Chen, and K. M. Hsiao, “Novel CLCN1 mutations in Taiwanese patients with myotonia congenita,” Journal of Neurology, vol. 251, no. 6, pp. 666–670, 2004. View at Scopus
  87. H. C. Kuo, K. M. Hsiao, L. I. Chang, T. H. You, T. H. Yeh, and C. C. Huang, “Novel mutations at carboxyl terminus of CIC-1 channel in myotonia congenita,” Acta Neurologica Scandinavica, vol. 113, no. 5, pp. 342–346, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. F. Sangiuolo, A. Botta, A. Mesoraca et al., “Identification of five new mutations and three novel polymorphisms in the muscle chloride channel gene (CLCN1) in 20 Italian patients with dominant and recessive myotonia congenita. Mutations in brief no. 118. Online,” Human Mutation, vol. 11, no. 4, p. 331, 1998. View at Scopus
  89. A. L. George Jr., K. Sloan-Brown, G. M. Fenichel, G. A. Mitchell, R. Spiegel, and R. M. Pascuzzi, “Nonsense and missense mutations of the muscle chloride channel gene in patients with myotonia congenita,” Human Molecular Genetics, vol. 3, no. 11, pp. 2071–2072, 1994. View at Scopus
  90. C. Meyer-Kleine, K. Steinmeyer, K. Ricker, T. J. Jentsch, and M. C. Koch, “Spectrum of mutations in the major human skeletal muscle chloride channel gene (CLCN1) leading to myotonia,” American Journal of Human Genetics, vol. 57, no. 6, pp. 1325–1334, 1995. View at Scopus
  91. S. H. Bryant, “Cable properties of external intercostal muscle fibres from myotonic and nonmyotonic goats,” Journal of Physiology, vol. 204, no. 3, pp. 539–550, 1969. View at Scopus
  92. G. Meola and V. Sansone, “Therapy in myotonic disorders and in muscle channelopathies,” Neurological Sciences, vol. 21, no. 5, pp. S953–S961, 2000. View at Scopus
  93. R. Rudel and F. Lehmann-Horn, “Membrane changes in cells from myotonia patients,” Physiological Reviews, vol. 65, no. 2, pp. 310–356, 1985. View at Scopus
  94. M. C. P. van Beekvelt, G. Drost, G. Rongen, D. F. Stegeman, B. G. M. van Engelen, and M. J. Zwarts, “Na+-K+-ATPase is not involved in the warming-up phenomenon in generalized myotonia,” Muscle and Nerve, vol. 33, no. 4, pp. 514–523, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. D. Fialho, D. M. Kullmann, M. G. Hanna, and S. Schorge, “Non-genomic effects of sex hormones on CLC-1 may contribute to gender differences in myotonia congenita,” Neuromuscular Disorders, vol. 18, no. 11, pp. 869–872, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. D. L. R. Rayan and M. G. Hanna, “Skeletal muscle channelopathies: nondystrophic myotonias and periodic paralysis,” Current Opinion in Neurology, vol. 23, no. 5, pp. 466–476, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. C. A. Gurnett, S. D. Kahl, R. D. Anderson, and K. P. Campbell, “Absence of the skeletal muscle sarcolemma chloride channel ClC-1 in myotonic mice,” Journal of Biological Chemistry, vol. 270, no. 16, pp. 9035–9038, 1995. View at Publisher · View at Google Scholar · View at Scopus
  98. J. D. Lueck, A. E. Rossi, C. A. Thornton, K. P. Campbell, and R. T. Dirksen, “Sarcolemmal-restricted localization of functional ClC-1 channels in mouse skeletal muscle,” Journal of General Physiology, vol. 136, no. 6, pp. 597–613, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. A. Rosenbohm, R. Rüdel, and C. Fahlke, “Regulation of the human skeletal muscle chloride channel hClC-1 by protein kinase C,” Journal of Physiology, vol. 514, part 3, pp. 677–685, 1999. View at Publisher · View at Google Scholar · View at Scopus
  100. E. C. Aromataris and G. Y. Rychkov, “ClC-1 chloride channel: matching its properties to a role in skeletal muscle,” Clinical and Experimental Pharmacology and Physiology, vol. 33, no. 11, pp. 1118–1123, 2006. View at Publisher · View at Google Scholar · View at Scopus