About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 691493, 7 pages
http://dx.doi.org/10.1155/2011/691493
Methodology Report

Employment of Oligodeoxynucleotide plus Interleukin-2 Improves Cytogenetic Analysis in Splenic Marginal Zone Lymphoma

1Section of Haematology, Department of Bio-Medical Sciences and Advanced Therapies, University of Ferrara, Ferrara, Italy
2Department of Onco-Hematology, IRCCS, Centro di Riferimento Oncologico della Basilicata, Via Padre Pio 1, 85028 Rionero in Vulture (Pz), Italy

Received 16 October 2010; Revised 21 February 2011; Accepted 15 March 2011

Academic Editor: Anita M. Oberbauer

Copyright © 2011 Antonella Bardi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. H. Swerdlow, E. Campo, N. L. Harris, et al., World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, International Agency for Research on Cancer, Lyon, France, 2008.
  2. V. Franco, A. M. Florena, and E. Iannitto, “Splenic marginal zone lymphoma,” Blood, vol. 101, no. 7, pp. 2464–2472, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. D. G. Oscier, E. Matutes, A. Gardiner et al., “Cytogenetic studies in splenic lymphoma with villous lymphocytes,” British Journal of Haematology, vol. 85, no. 3, pp. 487–491, 1993. View at Scopus
  4. J. Dierlamm, L. Michaux, I. Wlodarska et al., “Trisomy 3 in marginal zone B-cell lymphoma: a study based on cytogenetic analysis and fluorescence in situ hybridization,” British Journal of Haematology, vol. 93, no. 1, pp. 242–249, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Solé, S. Woessner, L. Florensa et al., “Frequent involvement of chromosomes 1, 3, 7 and 8 in splenic marginal zone B-cell lymphoma,” British Journal of Haematology, vol. 98, no. 2, pp. 446–449, 1997. View at Scopus
  6. F. Solé, M. Salido, B. Espinet et al., “Splenic marginal zone B-cell lymphomas: two cytogenetic subtypes, one with gain of 3q and the other with loss of 7q,” Haematologica, vol. 86, no. 1, pp. 71–77, 2001. View at Scopus
  7. S. Gazzo, L. Baseggio, L. Coignet et al., “Cytogenetic and molecular delineation of a region of chromosome 3q commonly gained in marginal zone B-cell lymphoma,” Haematologica, vol. 88, no. 1, pp. 31–38, 2003. View at Scopus
  8. A. Cuneo, R. Bigoni, M. G. Roberti et al., “Molecular cytogenetic characterization of marginal zone B-cell lymphonia: correlation with clinicopathologic findings in 14 cases,” Haematologica, vol. 86, no. 1, pp. 64–70, 2001. View at Scopus
  9. X. Troussard, L. Mauvieux, I. Radford-Weiss et al., “Genetic analysis of splenic lymphoma with villous lymphocytes: a Groupe Francais d'Hematologie Cellulaire (GFHC) study,” British Journal of Haematology, vol. 101, no. 4, pp. 712–721, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. Hernández, J. L. García, N. C. Gutiérrez et al., “Novel genomic imbalances in b-cell splenic marginal zone lymphomas revealed by comparative genomic hybridization and cytogenetics,” American Journal of Pathology, vol. 158, no. 5, pp. 1843–1850, 2001. View at Scopus
  11. F. Vega, J. H. Cho-Vega, P. A. Lennon et al., “Splenic marginal zone lymphomas are characterized by loss of interstitial regions of chromosome 7q, 7q31.32 and 7q36.2 that include the protection of telomere 1 (POT1) and sonic hedgehog (SHH) genes,” British Journal of Haematology, vol. 142, no. 2, pp. 216–226, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. A. James Watkins, Y. Huang, H. Ye et al., “Splenic marginal zone lymphoma: characterization of 7q deletion and its value in diagnosis,” Journal of Pathology, vol. 220, no. 4, pp. 461–474, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. M. Salido, C. Baró, D. Oscier et al., “Cytogenetic aberrations and their prognostic value in a series of 330 splenic marginal zone B-cell lymphomas: a multicenter study of the Splenic B-Cell Lymphoma Group,” Blood, vol. 116, no. 9, pp. 1479–1488, 2010. View at Publisher · View at Google Scholar · View at PubMed
  14. F. Dicker, S. Schnittger, T. Haferlach, W. Kern, and C. Schoch, “Immunostimulatory oligonucleotide-induced metaphase cytogenetics detect chromosomal aberrations in 80% of CLL patients: a study of 132 CLL cases with correlation to FISH, IgVH status, and CD38 expression,” Blood, vol. 108, no. 9, pp. 3152–3160, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. C. Haferlach, F. Dicker, S. Schnittger, W. Kern, and T. Haferlach, “Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgVH status and immunophenotyping,” Leukemia, vol. 21, no. 12, pp. 2442–2451, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. M. Mollejo, J. Menarguez, E. Lloret et al., “Splenic marginal zone lymphoma: a distinctive type of low-grade B-cell lymphoma: a clinicopathological study of 13 cases,” American Journal of Surgical Pathology, vol. 19, no. 10, pp. 1146–1157, 1995. View at Scopus
  17. E. Matutes, D. Oscier, C. Montalban et al., “Splenic marginal zone lymphoma proposals for a revision of diagnostic, staging and therapeutic criteria,” Leukemia, vol. 22, no. 3, pp. 487–495, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. G. L. Castoldi, F. Lanza, and A. Cuneo, “Cytogenetic aspects of B-cell chronic lymphocytic leukemia: their correlation with clinical stage and different polyclonal mitogens,” Cancer Genetics and Cytogenetics, vol. 26, no. 1, pp. 75–84, 1987. View at Scopus
  19. D. E. Rooney, Human Cytogenetics: Malignancy and Acquired Abnormalities, Oxford university Press, 2001.
  20. M. F. Karger, “Guidelines for Cancer Cytogenetics: Supplement to an International System for Human Cytogenetics Nomenclature ISCN,” Basel, Switzerland, 2005.
  21. J. M. Hernandez, C. Mecucci, A. Criel et al., “Cytogenetic analysis of B cell chronic lymphoid leukemias classified according to morphologic and immunophenotypic (FAB) criteria,” Leukemia, vol. 9, no. 12, pp. 2140–2146, 1995. View at Scopus
  22. A. M. Gruszka-Westwood, R. A. Hamoudi, E. Matutes, E. Tuset, and D. Catovsky, “p53 abnormalities in splenic lymphoma with villous lymphocytes,” Blood, vol. 97, no. 11, pp. 3552–3558, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Zenz, H. Döhner, and S. Stilgenbauer, “Genetics and risk-stratified approach to therapy in chronic lymphocytic leukemia,” Best Practice and Research, vol. 20, no. 3, pp. 439–453, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. G. Juliusson, D. G. Oscier, M. Fitchett et al., “Prognostic subgroups in B-cell chronic lymphocytic leukemia defined by specific chromosomal abnormalities,” New England Journal of Medicine, vol. 323, no. 11, pp. 720–724, 1990. View at Scopus
  25. C. Haferlach, F. Dicker, T. Weiss et al., “Toward a comprehensive prognostic scoring system in chronic lymphocytic leukemia based on a combination of genetic parameters,” Genes Chromosomes and Cancer, vol. 49, no. 9, pp. 851–859, 2010. View at Publisher · View at Google Scholar · View at PubMed
  26. R. Buhmann, C. Kurzeder, J. Rehklau et al., “CD40L stimulation enhances the ability of conventional metaphase cytogenetics to detect chromosome aberrations in B-cell chronic lymphocytic leukaemia cells,” British Journal of Haematology, vol. 118, no. 4, pp. 968–975, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. N. A. Heerema, J. C. Byrd, P. S. Dal Cin et al., “Stimulation of chronic lymphocytic leukemia cells with CpG oligodeoxynucleotide gives consistent karyotypic results among laboratories: a CLL Research Consortium (CRC) Study,” Cancer Genetics and Cytogenetics, vol. 203, no. 2, pp. 134–140, 2010. View at Publisher · View at Google Scholar · View at PubMed
  28. A. Meloni-Ehrig, J. Meck, N. Christacos, J. Kelly, L. Matyakhina, and S. Schonberg, “Stimulation of B-cell mature malignancies with the CpG-oligonucleotide DSP30 and interleukin-2 for improved detection of chromosome abnormalities,” Blood, vol. 114, 2009, ASH Annual Meeting Abstracts. Abs no. 1955.
  29. L. Reindl, U. Bacher, F. Dicker et al., “Biological and clinical characterization of recurrent 14q deletions in CLL and other mature B-cell neoplasms,” British Journal of Haematology, vol. 151, no. 1, pp. 25–36, 2010. View at Publisher · View at Google Scholar · View at PubMed
  30. J. I. Martín-Subero, R. Ibbotson, W. Klapper et al., “A comprehensive genetic and histopathologic analysis identifies two subgroups of B-cell malignancies carrying a t(14;19)(q32;q13) or variant BCL3-translocation,” Leukemia, vol. 21, no. 7, pp. 1532–1544, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. Y. O. Huh, L. V. Abruzzo, G. Z. Rassidakis et al., “The t(14;19)(q32;q13)-positive small B-cell leukaemia: a clinicopathologic and cytogenetic study of seven cases,” British Journal of Haematology, vol. 136, no. 2, pp. 220–228, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. L. Michaux, J. Dierlamm, I. Wlodarska, V. Bours, H. Van Den Berghe, and A. Hagemeijer, “t(14;19)/BCL3 rearrangements in lymphoproliferative disorders: a review of 23 cases,” Cancer Genetics and Cytogenetics, vol. 94, no. 1, pp. 36–43, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Robledo, J. L. García, D. Caballero et al., “Array comparative genomic hybridization identifies genetic regions associated with outcome in aggressive diffuse large B-cell lymphomas,” Cancer, vol. 115, no. 16, pp. 3728–3737, 2009. View at Publisher · View at Google Scholar · View at PubMed