About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 715251, 9 pages
http://dx.doi.org/10.1155/2011/715251
Research Article

Preclinical Studies with Umbilical Cord Mesenchymal Stromal Cells in Different Animal Models for Muscular Dystrophy

1Human Genome Research Center, Biosciences Institute, University of Sao Paulo, Brazil
2Biotechnology Department, National Nuclear Energy Commission-IPEN-CNEN, Sao Paulo, Brazil

Received 29 March 2011; Revised 7 May 2011; Accepted 16 May 2011

Academic Editor: Ken-ichi Isobe

Copyright © 2011 Eder Zucconi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. A. Zuk, M. Zhu, H. Mizuno et al., “Multilineage cells from human adipose tissue: implications for cell-based therapies,” Tissue Engineering, vol. 7, no. 2, pp. 211–228, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. S. Gronthos, M. Mankani, J. Brahim, P. G. Robey, and S. Shi, “Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 25, pp. 13625–13630, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. M. Secco, E. Zucconi, N. M. Vieira et al., “Multipotent stem cells from umbilical cord: cord is richer than blood!,” Stem Cells, vol. 26, no. 1, pp. 146–150, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. T. Jazedje, P. M. Perin, C. E. Czeresnia et al., “Human fallopian tube: a new source of multipotent adult mesenchymal stem cells discarded in surgical procedures,” Journal of Translational Medicine, vol. 7, article no. 46, 2009. View at Publisher · View at Google Scholar · View at PubMed
  5. M. Vainzof and M. Zatz, “Protein defects in neuromuscular diseases,” Brazilian Journal of Medical and Biological Research, vol. 36, no. 5, pp. 543–555, 2003. View at Scopus
  6. E. P. Hoffman, R. H. Brown Jr., and L. M. Kunkel, “Dystrophin: the protein product of the Duchenne muscular dystrophy locus,” Cell, vol. 51, no. 6, pp. 919–928, 1987. View at Scopus
  7. G. Bulfield, W. G. Siller, P. A. L. Wight, and K. J. Moore, “X chromosome-linked muscular dystrophy (mdx) in the mouse,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 4, pp. 1189–1192, 1984. View at Scopus
  8. M. Vainzof, D. Ayub-Guerrieri, P. C. G. Onofre et al., “Animal models for genetic neuromuscular diseases,” Journal of Molecular Neuroscience, vol. 34, no. 3, pp. 241–248, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. N. J. H. Sharp, J. N. Kornegay, S. D. Van Camp et al., “An error in dystrophin mRNA processing in golden retriever muscular dystrophy, an animal homologue of Duchenne muscular dystrophy,” Genomics, vol. 13, no. 1, pp. 115–121, 1992. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Zucconi, M. C. Valadares, N. M. Vieira et al., “Ringo: discordance between the molecular and clinical manifestation in a golden retriever muscular dystrophy dog,” Neuromuscular Disorders, vol. 20, no. 1, pp. 64–70, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. M. Zatz, F. De Paula, A. Starling, and M. Vainzof, “The 10 autosomal recessive limb-girdle muscular dystrophies,” Neuromuscular Disorders, vol. 13, no. 7-8, pp. 532–544, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. J. C. Kaplan, “Gene table of monogenic neuromuscular disorders (nuclear genome only) Vol 19. No 1 January 2009,” Neuromuscular Disorders, vol. 19, no. 1, pp. 77–98, 2009.
  13. I. Mahjneh, M. R. Passos-Bueno, M. Zatz et al., “The phenotype of chromosome 2p-linked limb-girdle muscular dystrophy,” Neuromuscular Disorders, vol. 6, no. 6, pp. 483–490, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Liu, M. Aoki, I. Illa et al., “Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy,” Nature Genetics, vol. 20, no. 1, pp. 31–36, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. C. Matsuda, M. Aoki, Y. K. Hayashi, M. F. Ho, K. Arahata, and R. H. Brown Jr., “Dysferlin is a surface membrane-associated protein that is absent in Miyoshi myopathy,” Neurology, vol. 53, no. 5, pp. 1119–1122, 1999. View at Scopus
  16. R. E. Bittner, L. V. B. Anderson, E. Burkhardt et al., “Dysferlin deletion in SJL mice (SJL-Dysf) defines a natural model for limb girdle muscular dystrophy 2B,” Nature Genetics, vol. 23, no. 2, pp. 141–142, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. E. Schultz and K. M. McCormick, “Skeletal muscle satellite cells,” Reviews of Physiology Biochemistry and Pharmacology, vol. 123, pp. 213–257, 1994.
  18. L. Heslop, J. E. Morgan, and T. A. Partridge, “Evidence for a myogenic stem cell that is exhausted in dystrophic muscle,” Journal of Cell Science, vol. 113, part 12, pp. 2299–2308, 2000. View at Scopus
  19. R. Laguens, “Satellite cells of skeletal muscle fibers in human progressive muscular dystrophy,” Virchows Archiv für Pathologische Anatomie und Physiologie und für Klinische Medizin, vol. 336, no. 6, pp. 564–569, 1963. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Secco, E. Zucconi, N. M. Vieira et al., “Mesenchymal stem cells from umbilical cord: do not discard the cord!,” Neuromuscular Disorders, vol. 18, no. 1, pp. 17–18, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. E. Zucconi, N. M. Vieira, D. F. Bueno et al., “Mesenchymal stem cells derived from canine umbilical cord vein—a novel source for cell therapy studies,” Stem Cells and Development, vol. 19, no. 3, pp. 395–402, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. A. Can and S. Karahuseyinoglu, “Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells,” Stem Cells, vol. 25, no. 11, pp. 2886–2895, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. P. S. Cho, D. J. Messina, E. L. Hirsh et al., “Immunogenicity of umbilical cord tissue-derived cells,” Blood, vol. 111, no. 1, pp. 430–438, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. K. Honeyman, K. S. Carville, J. M. Howell, S. Fletcher, and S. D. Wilton, “Development of a snapback method of single-strand conformation polymorphism analysis for genotyping golden retrievers for the X-linked muscular dystrophy allele,” American Journal of Veterinary Research, vol. 60, no. 6, pp. 734–737, 1999. View at Scopus
  25. J. L. Wagner, R. C. Burnett, S. A. Derose, L. V. Francisco, R. Store, and E. A. Ostrander, “Histocompatibility testing of dog families with highly polymorphic microsatellite markers,” Transplantation, vol. 62, no. 6, pp. 876–877, 1996. View at Scopus
  26. O. Pelz, M. Wu, T. Nikolova et al., “Duplex polymerase chain reaction quantification of human cells in a murine background,” Stem Cells, vol. 23, no. 6, pp. 828–833, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. M. Olivier, M. Breen, M. M. Binns, and G. Lust, “Localization and characterization of nucleotide sequences from the canine Y chromosome,” Chromosome Research, vol. 7, no. 3, pp. 223–233, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Vainzof, M. R. Passos-Bueno, and M. Zatz, “Immunological methods for the analysis of protein expression in neuromuscular diseases,” Methods in Molecular Biology, vol. 217, pp. 355–378, 2003. View at Scopus
  29. P. F. Kennel, P. Fonteneau, E. Martin et al., “Electromyographical and motor performance studies in the pmn mouse model of neurodegenerative disease,” Neurobiology of Disease, vol. 3, no. 2, pp. 137–147, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. N. M. Vieira, E. Zucconi, C. R. Bueno Jr. et al., “Human multipotent mesenchymal stromal cells from distinct sources show different in vivo potential to differentiate into muscle cells when injected in dystrophic mice,” Stem Cell Reviews and Reports, vol. 6, no. 4, pp. 560–566, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. S. F. Phelps, M. A. Hauser, N. M. Cole et al., “Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice,” Human Molecular Genetics, vol. 4, no. 8, pp. 1251–1258, 1995. View at Scopus
  32. D. J. Wells, K. E. Wells, E. A. Asante et al., “Expression of human full-length and minidystrophin in transgenic mdx mice: implications for gene therapy of Duchenne muscular dystrophy,” Human Molecular Genetics, vol. 4, no. 8, pp. 1245–1250, 1995. View at Scopus
  33. M. Secco, Y. B. Moreira, E. Zucconi et al., “Gene expression profile of mesenchymal stem cells from paired umbilical cord units: cord is different from blood,” Stem Cell Reviews and Reports, vol. 5, no. 4, pp. 387–401, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. T. Jazedje, M. Secco, N. M. Vieira et al., “Stem cells from umbilical cord blood do have myogenic potential, with and without differentiation induction in vitro,” Journal of Translational Medicine, vol. 7, article no. 6, 2009. View at Publisher · View at Google Scholar · View at PubMed
  35. E. J. Gang, J. A. Jeong, S. H. Hong et al., “Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood,” Stem Cells, vol. 22, no. 4, pp. 617–624, 2004. View at Scopus
  36. K. Y. Kong, J. Ren, M. Kraus, S. P. Finklestein, and R. H. Brown Jr., “Human umbilical cord blood cells differentiate into muscle in sjl muscular dystrophy mice,” Stem Cells, vol. 22, no. 6, pp. 981–993, 2004. View at Scopus
  37. P. B. Kang, H. G. W. Lidov, A. J. White et al., “Inefficient dystrophin expression after cord blood transplantation in duchenne muscular dystrophy,” Muscle and Nerve, vol. 41, no. 6, pp. 746–750, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. N. M. Vieira, C. R. Bueno Jr., V. Brandalise et al., “SJL dystrophic mice express a significant amount of human muscle proteins following systemic delivery of human adipose-derived stromal cells without immunosuppression,” Stem Cells, vol. 26, no. 9, pp. 2391–2398, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. M. Sampaolesi, S. Blot, G. D'Antona et al., “Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs,” Nature, vol. 444, no. 7119, pp. 574–579, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. C. Dell'Agnola, Z. Wang, R. Storb et al., “Hematopoietic stem cell transplantation does not restore dystrophin expression in Duchenne muscular dystrophy dogs,” Blood, vol. 104, no. 13, pp. 4311–4318, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. C. S. Kuhr, M. Lupu, and R. Storb, “Hematopoietic cell transplantation directly into dystrophic muscle fails to reconstitute satellite cells and myofibers,” Biology of Blood and Marrow Transplantation, vol. 13, no. 8, pp. 886–888, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. D. J. Prockop, “Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms,” Molecular Therapy, vol. 17, no. 6, pp. 939–946, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. K. English, A. French, and K. J. Wood, “Mesenchymal stromal cells: facilitators of successful transplantation?” Cell Stem Cell, vol. 7, no. 4, pp. 431–442, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. S. Tipnis, C. Viswanathan, and A. S. Majumdar, “Immunosuppressive properties of human umbilical cord-derived mesenchymal stem cells: role of B7-H1 and IDO,” Immunology and Cell Biology, vol. 88, no. 8, pp. 795–806, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. M. L. Weiss, C. Anderson, S. Medicetty et al., “Immune properties of human umbilical cord Wharton's jelly-derived cells,” Stem Cells, vol. 26, no. 11, pp. 2865–2874, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. L. Wang, L. Ott, K. Seshareddy, M. L. Weiss, and M. S. Detamore, “Musculoskeletal tissue engineering with human umbilical cord mesenchymal stromal cells,” Regenerative Medicine, vol. 6, no. 1, pp. 95–109, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. M. L. Weiss, K. E. Mitchell, J. E. Hix et al., “Transplantation of porcine umbilical cord matrix cells into the rat brain,” Experimental Neurology, vol. 182, no. 2, pp. 288–299, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. M. L. Weiss, S. Medicetty, A. R. Bledsoe et al., “Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease,” Stem Cells, vol. 24, no. 3, pp. 781–792, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. R. S. Rachakatla, F. Marini, M. L. Weiss, M. Tamura, and D. Troyer, “Development of human umbilical cord matrix stem cell-based gene therapy for experimental lung tumors,” Cancer Gene Therapy, vol. 14, no. 10, pp. 828–835, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. M. C. Pereira, M. Secco, D. E. Suzuki, et al., “Contamination of mesenchymal stem-cells with fibroblasts accelerates neurodegeneration in an experimental model of Parkinson's disease,” Stem Cell Reviews and Reports, 2011. In press. View at Publisher · View at Google Scholar · View at PubMed
  51. K. Chen, D. Wang, W. T. Du, et al., “Human umbilical cord mesenchymal stem cells hUC-MSC exert immunosuppressive activities through a PGE2 -dependent mechanism,” Clinical Immunology, vol. 135, no. 3, pp. 448–458, 2010.