About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 790871, 11 pages
http://dx.doi.org/10.1155/2011/790871
Review Article

Extranodal NK/T-Cell Lymphoma: Toward the Identification of Clinical Molecular Targets

1INSERM U976, 75010 Paris, France
2Faculté des Sciences, Université Paris Diderot, 75013 Paris, France
3Immunologie, Oncologie, et Dermatologie, INSERM U976, Hôpital Saint-Louis, 1 avenue Claude Vellefaux, Pavillon Bazin, 75475 Paris Cedex 10, France
4Department of Anatomic Pathology, Chang Gung Memorial Hospital, Gueishan 33305, Taiwan
5INSERM U955, 94010 Créteil, France
6Faculté de Médecine, Université Paris-Est Créteil, 94010 Créteil, France
7Groupe Henri-Mondor, Département de Pathologie, AP-HP, 94010 Créteil, France

Received 30 December 2010; Accepted 24 February 2011

Academic Editor: John E. Coligan

Copyright © 2011 Christian Schmitt et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Swerdlow, E. Campo, N. Harris, E. Jaffe, and S. H. S. Pileri, WHO Classification of Tumors of the Haematopoietic and Lymphoid Tissues, International Agency of Research on Cancer (IARC), Lyon, France, 2008.
  2. W. Y. Au, D. D. Weisenburger, T. Intragumtornchai et al., “Clinical differences between nasal and extranasal natural killer/T-cell lymphoma: a study of 136 cases from the International Peripheral T-Cell Lymphoma Project,” Blood, vol. 113, no. 17, pp. 3931–3937, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. J. K. C. Chan, V. C. Sin, K. F. Wong et al., “Nonnasal lymphoma expressing the natural killer cell marker CD56: a clinicopathologic study of 49 cases of an uncommon aggressive neoplasm,” Blood, vol. 89, no. 12, pp. 4501–4513, 1997. View at Scopus
  4. J. Lee, H. P. Yeon, S. K. Won et al., “Extranodal nasal type NK/T-cell Lymphoma: elucidating clinical prognostic factors for risk-based stratification of therapy,” European Journal of Cancer, vol. 41, no. 10, pp. 1402–1408, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Takahashi, N. Asano, C. Li et al., “Nodal T/NK-cell lymphoma of nasal type: a clinicopathological study of six cases,” Histopathology, vol. 52, no. 5, pp. 585–596, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Aviles, L. Rodriguez, R. Guzman, A. Talavera, E. L. Garcia, and J. C. Diaz-Maqueo, “Angiocentric T-cell lymphoma of the nose, paranasal sinuses and hard palate,” Hematological Oncology, vol. 10, no. 3-4, pp. 141–147, 1992. View at Publisher · View at Google Scholar · View at Scopus
  7. J. K. C. Chan, C. S. Ng, P. K. Hui, S. T. H. Lo, and W. H. Lau, “Angiocentric T-cell lymphoma of the skin: an aggressive lymphoma distinct from mycosis fungoides,” American Journal of Surgical Pathology, vol. 12, no. 11, pp. 861–876, 1988. View at Scopus
  8. Y. Ishii, N. Yamanaka, and K. Ogawa, “Nasal T-cell lymphoma as a type of so-called “lethal midline granuloma”,” Cancer, vol. 50, no. 11, pp. 2336–2344, 1982.
  9. N. L. Harris, E. S. Jaffe, H. Stein et al., “A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group,” Blood, vol. 84, no. 5, pp. 1361–1392, 1994. View at Scopus
  10. J. F. Emile, M. L. Boulland, C. Haioun et al., “CD5-CD56+ T-cell receptor silent peripheral T-cell lymphomas are natural killer cell lymphomas,” Blood, vol. 87, no. 4, pp. 1466–1473, 1996. View at Scopus
  11. J. Suzumiya, M. Takeshita, N. Kimura et al., “Expression of adult and fetal natural killer cell markers in sinonasal lymphomas,” Blood, vol. 83, no. 8, pp. 2255–2260, 1994. View at Scopus
  12. P. Kanavaros, M. C. Lescs, J. Briere et al., “Nasal T-cell lymphoma: a clinicopathologic entity associated with peculiar phenotype and with Epstein-Barr virus,” Blood, vol. 81, no. 10, pp. 2688–2695, 1993. View at Scopus
  13. A. K. Ruskova, R. Thula, and G. T. C. Chan, “Aggressive natural killer-cell leukemia: report of five cases and review of the literature,” Leukemia and Lymphoma, vol. 45, no. 12, pp. 2427–2438, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. A. K. S. Chiang, K. Y. Wong, A. C. T. Liang, and G. Srivastava, “Comparative analysis of Epstein-Barr virus gene polymorphisms in nasal T/NK-cell lymphomas and normal nasal tissues: implications on virus strain selection in malignancy,” International Journal of Cancer, vol. 80, no. 3, pp. 356–364, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Minarovits, L. F. Hu, S. Imai et al., “Clonality, expression and methylation patterns of the Epstein-Barr virus genomes in lethal midline granulomas classified as peripheral angiocentric T cell lymphomas,” Journal of General Virology, vol. 75, no. 1, pp. 77–84, 1994. View at Scopus
  16. A. Jaccard, N. Gachard, B. Marin et al., “Efficacy of L-asparaginase with methotrexate and dexamethasone (AspaMetDex regimen) in patients with refractory or relapsing extranodal NK/T-cell lymphoma, a phase 2 study,” Blood, vol. 117, no. 6, pp. 1834–1839, 2011. View at Publisher · View at Google Scholar
  17. J. R. Anderson, J. O. Armitage, and D. D. Weisenburger, “Epidemiology of the non-Hodgkin's lymphomas: distributions of the major subtypes differ by geographic locations,” Annals of Oncology, vol. 9, no. 7, pp. 717–720, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Kohrt and R. Advani, “Extranodal natural killer/T-cell lymphoma: current concepts in biology and treatment biology and treatment,” Leukemia and Lymphoma, vol. 50, no. 11, pp. 1773–1784, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. J. M. Vose, M. Neumann, and M. E. Harris, “International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes international T-cell lymphoma project,” Journal of Clinical Oncology, vol. 26, no. 25, pp. 4124–4130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Bossard, K. Belhadj, F. Reyes et al., “Expression of the granzyme B inhibitor PI9 predicts outcome in nasal NK/T-cell lymphoma: results of a Western series of 48 patients treated with first-line polychemotherapy within the Groupe d'Etude des Lymphomes de l'Adulte (GELA) trials,” Blood, vol. 109, no. 5, pp. 2183–2189, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. T. M. Kim, S. Y. Lee, Y. K. Jeon et al., “Clinical heterogeneity of extranodal NK/T-cell lymphoma, nasal type: a national survey of the Korean Cancer Study Group,” Annals of Oncology, vol. 19, no. 8, pp. 1477–1484, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Yong, W. Zheng, J. Zhu et al., “L-asparaginase in the treatment of refractory and relapsed extranodal NK/ T-cell lymphoma, nasal type,” Annals of Hematology, vol. 88, no. 7, pp. 647–652, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. V. E. Reyes Jr., T. Al-Saleem, V. G. Robu, and M. R. Smith, “Extranodal NK/T-cell lymphoma nasal type: efficacy of pegaspargase. Report of two patients from the United Sates and review of literature,” Leukemia Research, vol. 34, no. 1, pp. e50–e54, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Huang, A. De Reyniès, L. De Leval et al., “Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type,” Blood, vol. 115, no. 6, pp. 1226–1237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Iqbal, D. D. Weisenburger, A. Chowdhury et al., “Natural killer cell lymphoma shares strikingly similar molecular features with a group of non-hepatosplenic γδ T-cell lymphoma and is highly sensitive to a novel aurora kinase A inhibitor in vitro,” Leukemia, vol. 25, no. 2, pp. 348–358, 2011. View at Publisher · View at Google Scholar
  26. T. Nagato, H. Kobayashi, K. Kishibe et al., “Expression of interleukin-9 in nasal natural killer/T-cell lymphoma cell lines and patients,” Clinical Cancer Research, vol. 11, no. 23, pp. 8250–8257, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Nakashima, H. Tagawa, R. Suzuki et al., “Genome-wide array-based comparative genomic hybridization of natural killer cell lymphoma/leukemia: different genomic alteration patterns of aggressive NK-cell leukemia and extranodal NK/T-cell lymphoma, nasal type,” Genes Chromosomes and Cancer, vol. 44, no. 3, pp. 247–255, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. S.-B. Ng, V. Selvarajan, G. Huang et al., “Activated oncogenic pathways and therapeutic targets in extranodal nasal-type NK/T cell lymphoma revealed by gene expression profiling,” Journal of Pathology, vol. 223, no. 4, pp. 496–510, 2011. View at Publisher · View at Google Scholar
  29. T. Oka, T. Yoshino, K. Hayashi et al., “Reduction of hematopoietic cell-specific tyrosine phosphatase SHP-1 gene expression in natural killer cell lymphoma and various types of lymphomas/leukemias: combination analysis with cDNA expression array and tissue microarray,” American Journal of Pathology, vol. 159, no. 4, pp. 1495–1505, 2001. View at Scopus
  30. Y. Zhang, J. H. Ohyashiki, T. Takaku, N. Shimizu, and K. Ohyashiki, “Transcriptional profiling of Epstein-Barr virus (EBV) genes and host cellular genes in nasal NK/T-cell lymphoma and chronic active EBV infection,” British Journal of Cancer, vol. 94, no. 4, pp. 599–608, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. H. E. Heslop, K. S. Slobod, M. A. Pule et al., “Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients,” Blood, vol. 115, no. 5, pp. 925–935, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. A. K. S. Chiang, Q. Tao, G. Srivastava, and F. C. S. Ho, “Nasal NK- and T-cell lymphomas share the same type of Epstein-Barr virus latency as nasopharyngeal carcinoma and Hodgkin's disease,” International Journal of Cancer, vol. 68, no. 3, pp. 285–290, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. C. M. Bollard, S. Gottschalk, A. M. Leen et al., “Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer,” Blood, vol. 110, no. 8, pp. 2838–2845, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. C. P. Fox, T. A. Haigh, G. S. Taylor et al., “A novel latent membrane 2 transcript expressed in Epstein-Barr virus-positive NK- and T-cell lymphoproliferative disease encodes a target for cellular immunotherapy,” Blood, vol. 116, no. 19, pp. 3695–3704, 2010. View at Publisher · View at Google Scholar
  35. T. Kaneko, J. Fukuda, T. Yoshihara et al., “Nasal natural killer (NK) cell lymphoma: report of a case with activated NK cells containing Epstein-Barr virus and expressing CD21 antigen, and comparative studies of their phenotype and cytotoxicity with normal NK cells,” British Journal of Haematology, vol. 91, no. 2, pp. 355–361, 1995. View at Scopus
  36. J. Tabiasco, A. Vercellone, F. Meggetto, D. Hudrisier, P. Brousset, and J. J. Fournié, “Acquisition of viral receptor by NK cells through immunological synapse,” Journal of Immunology, vol. 170, no. 12, pp. 5993–5998, 2003. View at Scopus
  37. H. Kimura, Y. Hoshino, H. Kanegane et al., “Clinical and virologic characteristics of chronic active Epstein-Barr virus infection,” Blood, vol. 98, no. 2, pp. 280–286, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. S. E. Straus, “The chronic mononucleosis syndrome,” Journal of Infectious Diseases, vol. 157, no. 3, pp. 405–412, 1988. View at Scopus
  39. J. I. Cohen, H. Kimura, S. Nakamura, Y. H. Ko, and E. S. Jaffe, “Epstein-Barr virus-associated lymphoproliferative disease in non-immunocompromised hosts: a status report and summary of an international meeting, 8-9 September 2008,” Annals of Oncology, vol. 20, no. 9, pp. 1472–1482, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. M. L. Boulland, V. Meignin, K. Leroy-Viard et al., “Human interleukin-10 expression in T/natural killer-cell lymphomas: association with anaplastic large cell lymphomas and nasal natural killer- cell lymphomas,” American Journal of Pathology, vol. 153, no. 4, pp. 1229–1237, 1998. View at Scopus
  41. J. Teruya-Feldstein, E. S. Jaffe, P. R. Burd et al., “The role of Mig, the monokine induced by interferon-γ, and IP-10, the interferon-γ-inducible protein-10, in tissue necrosis and vascular damage associated with Epstein-Barr virus-positive lymphoproliferative disease,” Blood, vol. 90, no. 10, pp. 4099–4105, 1997. View at Scopus
  42. P. Kanavaros, M. L. Boulland, B. Petit, B. Arnulf, and P. Gaulard, “Expression of cytotoxic proteins in peripheral T-cell and natural killer-cell (NK) lymphomas: association with extranodal site, NK or Tγδ phenotype, anaplastic morphology and CD30 expression,” Leukemia and Lymphoma, vol. 38, no. 3-4, pp. 317–326, 2000. View at Scopus
  43. E. Vivier, E. Tomasello, M. Baratin, T. Walzer, and S. Ugolini, “Functions of natural killer cells,” Nature Immunology, vol. 9, no. 5, pp. 503–510, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Schmitt, B. Ghazi, and A. Bensussan, “NK cells and surveillance in humans,” Reproductive BioMedicine Online, vol. 16, no. 2, pp. 192–201, 2008. View at Scopus
  45. P. Parham, “MHC class I molecules and KIRS in human history, health and survival,” Nature Reviews Immunology, vol. 5, no. 3, pp. 201–214, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Suto, K. Maenaka, T. Yabe et al., “Chromosomal localization of the human natural killer cell class I receptor family genes to 19q13.4 by fluorescence in situ hybridization,” Genomics, vol. 35, no. 1, pp. 270–272, 1996. View at Publisher · View at Google Scholar · View at Scopus
  47. S. I. Khakoo and M. Carrington, “KIR and disease: a model system or system of models?” Immunological Reviews, vol. 214, no. 1, pp. 186–201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. W. Haedicke, F. C. S. Ho, A. Chott et al., “Expression of CD94/NKG2A and killer immunoglobulin-like receptors in NK cells and a subset of extranodal cytotoxic T-cell lymphomas,” Blood, vol. 95, no. 11, pp. 3628–3630, 2000. View at Scopus
  49. C. W. Lin, W. H. Lee, C. L. Chang, J. Y. Yang, and S. M. Hsu, “Restricted killer cell immunoglobulin-like receptor repertoire without T-cell receptor γ rearrangement supports a true natural killer-cell lineage in a subset of sinonasal lymphomas,” American Journal of Pathology, vol. 159, no. 5, pp. 1671–1679, 2001. View at Scopus
  50. R. Lundell, L. Hartung, S. Hill, S. L. Perkins, and D. W. Bahler, “T-cell large granular lymphocyte leukemias have multiple phenotypic abnormalities involving pan-T-cell antigens and receptors for MHC molecules,” American Journal of Clinical Pathology, vol. 124, no. 6, pp. 937–946, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Dalloul, L. Laroche, M. Bagot et al., “Interleukin-7 is a growth factor for Sezary lymphoma cells,” Journal of Clinical Investigation, vol. 90, no. 3, pp. 1054–1060, 1992. View at Scopus
  52. N. Ortonne, S. Le Gouvello, H. Mansour et al., “CD158K/KIR3DL2 transcript detection in lesional skin of patients with erythroderma is a tool for the diagnosis of Sézary syndrome,” Journal of Investigative Dermatology, vol. 128, no. 2, pp. 465–472, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. E. Poszepczynska-Guigné, V. Schiavon, M. D'Incan et al., “CD158k/KIR3DL2 is a new phenotypic marker of sezary cells: relevance for the diagnosis and follow-up of sezary syndrome,” Journal of Investigative Dermatology, vol. 122, no. 3, pp. 820–823, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. F. Takei, K. L. McQueen, M. Maeda et al., “Ly49 and CD94/NKG2: developmentally regulated expression and evolution,” Immunological Reviews, vol. 181, pp. 90–103, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. C. W. Lin, Y. H. Chen, Y. C. Chuang, T. Y. Liu, and S. M. Hsu, “CD94 transcripts imply a better prognosis in nasal-type extranodal NK/T-cell lymphoma,” Blood, vol. 102, no. 7, pp. 2623–2631, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. L. A. Fernandez, B. Pope, C. Lee, and E. Zayed, “Aggressive natural killer cell leukemia in an adult with establishment of an NK cell line,” Blood, vol. 67, no. 4, pp. 925–930, 1986. View at Scopus
  57. S. Koizumi, H. Seki, and T. Tachinami, “Malignant clonal expansion of large granular lymphocytes with a Leu-11+, Leu-7- surface phenotype: in vitro responsiveness of malignant cells to recombinant human interleukin 2,” Blood, vol. 86, no. 5, pp. 1065–1073, 1986.
  58. C. J. Froelich, V. M. Dixit, and X. Yang, “Lymphocyte granule-mediated apoptosis: matters of viral mimicry and deadly proteases,” Immunology Today, vol. 19, no. 1, pp. 30–36, 1998. View at Publisher · View at Google Scholar · View at Scopus
  59. M. B. Barrie, H. W. Stout, M. S. Abougergi, B. C. Miller, and D. L. Thiele, “Antiviral cytokines induce hepatic expression of the granzyme B inhibitors, proteinase inhibitor 9 and serine proteinase inhibitor 6,” Journal of Immunology, vol. 172, no. 10, pp. 6453–6459, 2004. View at Scopus
  60. B. A. Bladergroen, C. J. L. M. Meijer, R. L. Ten Berge et al., “Expression of the granzyme B inhibitor, protease inhibitor 9, by tumor cells in patients with non-Hodgkin and Hodgkin lymphoma: a novel protective mechanism for tumor cells to circumvent the immune system?” Blood, vol. 99, no. 1, pp. 232–237, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. C. S. Ng, S. T. H. Lo, J. K. C. Chan, and W. C. Chan, “CD56+ putative natural killer cell lymphomas: production of cytolytic effectors and related proteins mediating tumor cell apoptosis?” Human Pathology, vol. 28, no. 11, pp. 1276–1282, 1997. View at Publisher · View at Google Scholar · View at Scopus
  62. K. Aozasa, T. Takakuwa, T. Hongyo, and W. I. Yang, “Nasal NK/T-cell lymphoma: epidemiology and pathogenesis,” International Journal of Hematology, vol. 87, no. 2, pp. 110–117, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Takakuwa, Z. Dong, S. Nakatsuka et al., “Frequent mutations of Fas gene in nasal NK/T cell lymphoma,” Oncogene, vol. 21, no. 30, pp. 4702–4705, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Yamaguchi, K. Kita, H. Miwa et al., “Frequent expression of P-glycoprotein/MDR1 by nasal T-cell lymphoma cells,” Cancer, vol. 76, no. 11, pp. 2351–2356, 1995. View at Publisher · View at Google Scholar · View at Scopus
  65. Y. H. Ko, H. J. Ree, W. S. Kim, W. H. Choi, W. S. Moon, and S. W. Kim, “Clinicopathologic and genotypic study of extranodal nasal-type natural killer/T-cell lymphoma and natural killer precursor lymphoma among Koreans,” Cancer, vol. 89, no. 10, pp. 2106–2116, 2000. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. H. Ko, K. E. Choi, J. H. Han, J. M. Kim, and H. J. Ree, “Comparative genomic hybridization study of nasal-type NK/T-cell lymphoma,” Communications in Clinical Cytometry, vol. 46, no. 2, pp. 85–91, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. L. L. Siu, V. Chan, J. K. C. Chan, K. F. Wong, R. Liang, and Y. L. Kwong, “Consistent patterns of allelic loss in natural killer cell lymphoma,” American Journal of Pathology, vol. 157, no. 6, pp. 1803–1809, 2000. View at Scopus
  68. L. L. Siu, K. F. Wong, J. K. C. Chan, and Y. L. Kwong, “Comparative genomic hybridization analysis of natural killer cell lymphoma/leukemia: recognition of consistent patterns of genetic alterations,” American Journal of Pathology, vol. 155, no. 5, pp. 1419–1425, 1999. View at Scopus
  69. H. S. Sun, I. J. Su, Y. C. Lin, J. S. Chen, and S. Y. Fang, “A 2.6 Mb interval on chromosome 6q25.2-q25.3 is commonly deleted in human nasal natural killer/T-cell lymphoma,” British Journal of Haematology, vol. 122, no. 4, pp. 590–599, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Yoon and Y. H. Ko, “Deletion mapping of the long arm of chromosome 6 in peripheral T and NK cell lymphomas,” Leukemia and Lymphoma, vol. 44, no. 12, pp. 2077–2082, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. J. Iqbal, C. Kucuk, R. J. deLeeuw et al., “Genomic analyses reveal global functional alterations that promote tumor growth and novel tumor suppressor genes in natural killer-cell malignancies,” Leukemia, vol. 23, no. 6, pp. 1139–1151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. A. Kuma, M. Hatano, M. Matsui et al., “The role of autophagy during the early neonatal starvation period,” Nature, vol. 432, no. 7020, pp. 1032–1036, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. M. M. Hippert, P. S. O'Toole, and A. Thorburn, “Autophagy in cancer: good, bad, or both?” Cancer Research, vol. 66, no. 19, pp. 9349–9351, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. M. E. Ray, G. Wistow, Y. A. Su, P. S. Meltzer, and J. M. Trent, “AIM1, a novel non-lens member of the βγ-crystallin superfamily, is associated with the control of tumorigenicity in human malignant melanoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 7, pp. 3229–3234, 1997. View at Publisher · View at Google Scholar · View at Scopus
  75. G. A. Martins, L. Cimmino, M. Shapiro-Shelef et al., “Transcriptional repressor Blimp-1 regulates T cell homeostasis and function,” Nature Immunology, vol. 7, no. 5, pp. 457–465, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. C. A. Turner Jr., D. H. Mack, and M. M. Davis, “Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells,” Cell, vol. 77, no. 2, pp. 297–306, 1994. View at Publisher · View at Google Scholar · View at Scopus
  77. L. Pasqualucci, M. Compagno, J. Houldsworth et al., “Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma,” Journal of Experimental Medicine, vol. 203, no. 2, pp. 311–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. G. L. Semenza, “Hif-1 and human disease: one highly involved factor,” Genes and Development, vol. 14, no. 16, pp. 1983–1991, 2000. View at Scopus
  79. P. J. Jost and J. Ruland, “Aberrant NF-κB signaling in lymphoma: mechanisms, consequences, and therapeutic implications,” Blood, vol. 109, no. 7, pp. 2700–2707, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. J. E. Darnell Jr., I. M. Kerr, and G. R. Stark, “Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins,” Science, vol. 264, no. 5164, pp. 1415–1421, 1994. View at Scopus
  81. Q. Zhang, P. N. Raghunath, L. Xue et al., “Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma,” Journal of Immunology, vol. 168, no. 1, pp. 466–474, 2002. View at Scopus
  82. P. Coppo, V. Gouilleux-Gruart, Y. Huang et al., “STAT3 transcription factor is constitutively activated and is oncogenic in nasal-type NK/T-cell lymphoma,” Leukemia, vol. 23, no. 9, pp. 1667–1678, 2009. View at Scopus
  83. P. P. Piccaluga, C. Agostinelli, A. Califano et al., “Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets,” Journal of Clinical Investigation, vol. 117, no. 3, pp. 823–834, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. T. Wang, G. Niu, M. Kortylewski et al., “Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells,” Nature Medicine, vol. 10, no. 1, pp. 48–54, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. D. Rotin and S. Kumar, “Physiological functions of the HECT family of ubiquitin ligases,” Nature Reviews Molecular Cell Biology, vol. 10, no. 6, pp. 398–409, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. R. Schmitz, M. L. Hansmann, V. Bohle et al., “TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma,” Journal of Experimental Medicine, vol. 206, no. 5, pp. 981–989, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. L. Quintanilla-Martinez, M. Kremer, G. Keller et al., “p53 mutations in nasal natural killer/t-cell lymphoma from mexico: association with large cell morphology and advanced disease,” American Journal of Pathology, vol. 159, no. 6, pp. 2095–2105, 2001. View at Scopus
  88. M. Li, D. Chen, A. Shiloh et al., “Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization,” Nature, vol. 416, no. 6881, pp. 648–653, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. M. Kimura, Y. Matsuda, T. Eki et al., “Assignment of STK6 to human chromosome 20q13.2→q13.1 and a pseudogene STK6P to 1q41→q42,” Cytogenetics and Cell Genetics, vol. 79, no. 3-4, pp. 201–203, 1997. View at Scopus
  90. L. Zhang, M. S. Anglesio, M. O'Sullivan et al., “The E3 ligase HACE1 is a critical chromosome 6q21 tumor suppressor involved in multiple cancers,” Nature Medicine, vol. 13, no. 9, pp. 1060–1069, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. M. S. Anglesio, V. Evdokimova, N. Melnyk et al., “Differential expression of a novel ankyrin containing E3 ubiquitin-protein ligase, Hace1, in sporadic Wilms' tumor versus normal kidney,” Human Molecular Genetics, vol. 13, no. 18, pp. 2061–2074, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. J. Zhao, Z. Zhang, Z. Vucetic, K. J. Soprano, and D. R. Soprano, “HACE1: a novel repressor of RAR transcriptional activity,” Journal of Cellular Biochemistry, vol. 107, no. 3, pp. 482–493, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. T. Bowman, R. Garcia, J. Turkson, and R. Jove, “STATs in oncogenesis,” Oncogene, vol. 19, no. 21, pp. 2474–2488, 2000. View at Scopus
  94. J. F. Bromberg, M. H. Wrzeszczynska, G. Devgan et al., “Stat3 as an oncogene,” Cell, vol. 98, no. 3, pp. 295–303, 1999. View at Publisher · View at Google Scholar · View at Scopus
  95. R. Chiarle, W. J. Simmons, H. Cai et al., “Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target,” Nature Medicine, vol. 11, no. 6, pp. 623–629, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. A. Zamo, R. Chiarle, R. Piva et al., “Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death,” Oncogene, vol. 21, no. 7, pp. 1038–1047, 2002. View at Publisher · View at Google Scholar · View at Scopus
  97. H. Yu, M. Kortylewski, and D. Pardoll, “Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment,” Nature Reviews Immunology, vol. 7, no. 1, pp. 41–51, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. M. Kortylewski, M. Kujawski, T. Wang et al., “Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity,” Nature Medicine, vol. 11, no. 12, pp. 1314–1321, 2005. View at Publisher · View at Google Scholar · View at Scopus
  99. C. Zou, J. Ma, X. Wang et al., “Lack of Fas antagonism by Met in human fatty liver disease,” Nature Medicine, vol. 13, no. 9, pp. 1078–1085, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. B. K. Hadland, N. R. Manley, D. M. Su et al., “γ-secretase inhibitors repress thymocyte development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 13, pp. 7487–7491, 2001. View at Publisher · View at Google Scholar · View at Scopus
  101. T. Palomero, M. L. Sulis, M. Cortina et al., “Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia,” Nature Medicine, vol. 13, no. 10, pp. 1203–1210, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. E. Chanudet, H. Ye, J. Ferry et al., “A20 deletion is associated with copy number gain at the TNFAIBIC locus and occurs preferentially in translocation-negative MALT lymphoma of the ocular adnexa and salivary glands,” Journal of Pathology, vol. 217, no. 3, pp. 420–430, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. L. L. Siu, J. K. C. Chan, K. F. Wong, and Y. L. Kwong, “Specific patterns of gene methylation in natural killer cell lymphomas: p73 is consistently involved,” American Journal of Pathology, vol. 160, no. 1, pp. 59–66, 2002. View at Scopus
  104. V. Rouget-Quermalet, J. Giustiniani, A. Marie-Cardine et al., “Protocadherin 15 (PCDH15): a new secreted isoform and a potential marker for NK/T cell lymphomas,” Oncogene, vol. 25, no. 19, pp. 2807–2811, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Ito, T. Maruyama, N. Saito, S. Koganei, K. Yamamoto, and N. Matsumoto, “Killer cell lectin-like receptor G1 binds three members of the classical cadherin family to inhibit NK cell cytotoxicity,” Journal of Experimental Medicine, vol. 203, no. 2, pp. 289–295, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. J. R. Bischoff and G. D. Plowman, “The Aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis,” Trends in Cell Biology, vol. 9, no. 11, pp. 454–459, 1999. View at Publisher · View at Google Scholar · View at Scopus
  107. H. Katayama, K. Sasai, H. Kawai et al., “Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53,” Nature Genetics, vol. 36, no. 1, pp. 55–62, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. H. G. Drexler and Y. Matsuo, “Malignant hematopoietic cell lines: in vitro models for the study of natural killer cell leukemia-lymphoma,” Leukemia, vol. 14, no. 5, pp. 777–782, 2000. View at Scopus
  109. S. Zhao, Q. L. Tang, M. X. He et al., “A novel nude mice model of human extranodal nasal type NK/T-cell lymphoma,” Leukemia, vol. 22, no. 1, pp. 170–178, 2008. View at Publisher · View at Google Scholar · View at Scopus