About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 812135, 9 pages
http://dx.doi.org/10.1155/2011/812135
Research Article

The Application of Three-Dimensional Collagen-Scaffolds Seeded with Myoblasts to Repair Skeletal Muscle Defects

1The Laboratory of Molecular Pathology, Stem Cell Research Center, Children's Hospital of Pittsburgh, PA 15219, USA
2Department of Bioengineering, University of Pittsburgh, PA 15219, USA
3Department of Orthopedic Surgery, School of Medicine, University of Pittsburgh, PA 15213, USA
4Department of Pediatric Surgery, University of Texas, Medical School at Houston, TX 77030, USA

Received 30 June 2011; Accepted 11 September 2011

Academic Editor: Guy Benian

Copyright © 2011 Jianqun Ma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Dragas, L. Davidovic, D. Kostic et al., “Upper extremity arterial injuries: factors influencing treatment outcome,” Injury, vol. 40, no. 8, pp. 815–819, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. C. E. Attinger, I. Ducic, P. Cooper, and C. M. Zelen, “The role of intrinsic muscle flaps of the foot for bone coverage in foot and ankle defects in diabetic and nondiabetic patients,” Plastic and Reconstructive Surgery, vol. 110, no. 4, pp. 1047–1054, 2002.
  3. A. K. Singh, K. P. Gudehithlu, S. Patri et al., “Impaired integration of endothelial progenitor cells in capillaries of diabetic wounds is reversible with vascular endothelial growth factor infusion,” Translational Research, vol. 149, no. 5, pp. 282–291, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. M. M. Al-Qattan, “Severe, traumatic soft-tissue loss in the antecubital fossa and proximal forearm associated with radial and/or median nerve palsy: nerve recovery after coverage with a pedicled latissimus dorsi muscle flap,” Annals of Plastic Surgery, vol. 46, no. 2, pp. 125–129, 2001. View at Scopus
  5. A. Takeuchi, H. Tsuchiya, T. Shirai, K. Hayashi, H. Nishida, and K. Tomita, “Occlusive dressing for large soft tissue defects following soft tissue tumor excision,” Journal of Orthopaedic Science, vol. 14, no. 4, pp. 385–390, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. E. D. Rodriguez, R. Bluebond-Langner, C. Copeland, T. N. Grim, N. K. Singh, and T. Scalea, “Functional outcomes of posttraumatic lower limb salvage: a pilot study of anterolateral thigh perforator flaps versus muscle flaps,” The Journal of trauma, vol. 66, no. 5, pp. 1311–1314, 2009. View at Scopus
  7. X. Shao, C. Chen, X. Zhang, Y. Yu, D. Ren, and L. Lu, “Coverage of fingertip defect using a dorsal island pedicle flap including both dorsal digital nerves,” Journal of Hand Surgery, vol. 34, no. 8, pp. 1474–1481, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. P. A. Janmey, J. P. Winer, and J. W. Weisel, “Fibrin gels and their clinical and bioengineering applications,” Journal of the Royal Society Interface, vol. 6, no. 30, pp. 1–10, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. G. Kumbar, S. P. Nukavarapu, R. James, L. S. Nair, and C. T. Laurencin, “Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering,” Biomaterials, vol. 29, no. 30, pp. 4100–4107, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Pei, L. A. Solchaga, J. Seidel et al., “Bioreactors mediate the effectiveness of tissue engineering scaffolds,” The FASEB Journal, vol. 16, no. 12, pp. 1691–1694, 2002. View at Scopus
  11. S. A. Riboldi, M. Sampaolesi, P. Neuenschwander, G. Cossu, and S. Mantero, “Electrospun degradable polyesterurethane membranes: potential scaffolds for skeletal muscle tissue engineering,” Biomaterials, vol. 26, no. 22, pp. 4606–4615, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. L. G. Griffith, “Emerging design principles in biomaterials and scaffolds for tissue engineering,” Annals of the New York Academy of Sciences, vol. 961, pp. 83–95, 2002. View at Scopus
  13. L. E. Freed, F. Guilak, X. E. Guo et al., “Advanced tools for tissue engineering: scaffolds, bioreactors, and signaling,” Tissue Engineering, vol. 12, no. 12, pp. 3285–3305, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. D. W. Hutmacher, “Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives,” Journal of Biomaterials Science, Polymer Edition, vol. 12, no. 1, pp. 107–124, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Cen, W. Liu, L. Cui, W. Zhang, and Y. Cao, “Collagen tissue engineering: development of novel biomaterials and applications,” Pediatric Research, vol. 63, no. 5, pp. 492–496, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. M. Anderson and J. J. Langone, “Issues and perspectives on the biocompatibility and immunotoxicity evaluation of implanted controlled release systems,” Journal of Controlled Release, vol. 57, no. 2, pp. 107–113, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. J. E. Babensee, J. M. Anderson, L. V. McIntire, and A. G. Mikos, “Host response to tissue engineered devices,” Advanced Drug Delivery Reviews, vol. 33, no. 1-2, pp. 111–139, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. J. M. Anderson, “Inflammatory response to implants,” ASAIO Transactions, vol. 34, no. 2, pp. 101–107, 1988. View at Scopus
  19. G. Vunjak-Novakovic, B. Obradovic, I. Martin, P. M. Bursac, R. Langer, and L. E. Freed, “Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering,” Biotechnology Progress, vol. 14, no. 2, pp. 193–202, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Radisic, M. Euloth, L. Yang, R. Langer, L. E. Freed, and G. Vunjak-Novakovic, “High-density seeding of myocyte cells for cardiac tissue engineering,” Biotechnology and Bioengineering, vol. 82, no. 4, pp. 403–414, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Wang, H. L. Jiao, J. Z. Zhang, and R. Q. He, “Three-dimensional culture of hybridoma cells secreting anti-human chorionic gonadotropin by a new rolling culture system,” Journal of Biomedicine and Biotechnology, vol. 2004, no. 1, pp. 35–40, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. N. A. Bleckwenn and J. Shiloach, “Large-scale cell culture,” Current Protocols in Immunology, Appendix 1, Appendix 1U, 2004.
  23. D. H. Park, C. V. Borlongan, D. J. Eve, and P. R. Sanberg, “The emerging field of cell and tissue engineering,” Medical Science Monitor, vol. 14, no. 11, pp. RA206–RA220, 2008. View at Scopus
  24. D. W. Hutmacher, M. Sittinger, and M. V. Risbud, “Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems,” Trends in Biotechnology, vol. 22, no. 7, pp. 354–362, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. C. -K. Perng, Y. -J. Wang, C. -H. Tsi, and H. Ma, “In vivo angiogenesis effect of porous collagen scaffold with hyaluronic acid oligosaccharides,” Journal of Surgical Research, vol. 168, no. 1, pp. 9–15, 2011. View at Publisher · View at Google Scholar
  26. C. K. Chiang, M. F. Chowdhury, R. K. Iyer, W. L. Stanford, and M. Radisic, “Engineering surfaces for site-specific vascular differentiation of mouse embryonic stem cells,” Acta Biomaterialia, vol. 6, no. 6, pp. 1904–1916, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. M. K. Smith, M. C. Peters, T. P. Richardson, J. C. Garbern, and D. J. Mooney, “Locally enhanced angiogenesis promotes transplanted cell survival,” Tissue Engineering, vol. 10, no. 1-2, pp. 63–71, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. D. J. Tilkorn, A. Bedogni, E. Keramidaris et al., “Implanted myoblast survival is dependent on the degree of vascularization in a novel delayed implantation/prevascularization tissue engineering model,” Tissue Engineering—Part A, vol. 16, no. 1, pp. 165–178, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Perrot, R. Berges, A. Bocquet, and J. Eyer, “Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration,” Molecular Neurobiology, vol. 38, no. 1, pp. 27–65, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. T. A. Partridge, J. E. Morgan, G. R. Coulton, E. P. Hoffman, and L. M. Kunkel, “Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts,” Nature, vol. 337, no. 6203, pp. 176–179, 1989. View at Scopus
  31. G. Q. Wallace, K. A. Lapidos, J. S. Kenik, and E. M. McNally, “Long-term survival of transplanted stem cells in immunocompetent mice with muscular dystrophy,” American Journal of Pathology, vol. 173, no. 3, pp. 792–802, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Liu, Y. Wu, and B. G. Chen, “Myoblast therapy: from bench to bedside,” Cell Transplantation, vol. 15, no. 6, pp. 455–462, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Matsuoka and A. Inoue, “Controlled differentiation of myoblast cells into fast and slow muscle fibers,” Cell and Tissue Research, vol. 332, no. 1, pp. 123–132, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Li and J. Huard, “Differentiation of muscle-derived cells into myofibroblasts in injured skeletal muscle,” American Journal of Pathology, vol. 161, no. 3, pp. 895–907, 2002. View at Scopus
  35. Y. Li, W. Foster, B. M. Deasy et al., “Transforming growth factor-β1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis,” American Journal of Pathology, vol. 164, no. 3, pp. 1007–1019, 2004. View at Scopus
  36. W. Wang, H. Pan, K. Murray, B. S. Jefferson, and Y. Li, “Matrix metalloproteinase-1 promotes muscle cell migration and differentiation,” American Journal of Pathology, vol. 174, no. 2, pp. 541–549, 2009. View at Publisher · View at Google Scholar · View at Scopus