About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 852419, 9 pages
http://dx.doi.org/10.1155/2011/852419
Review Article

Epithelial Cell Coculture Models for Studying Infectious Diseases: Benefits and Limitations

1School of Medical Sciences and Griffith Health Institute, Centre for Medicine and Oral Health, Griffith University, Southport, QLD 4222, Australia
2School of Chemistry and Molecular Biosciences, the University of Queensland, QLD 4072, Australia

Received 4 May 2011; Revised 19 July 2011; Accepted 27 July 2011

Academic Editor: Anthony L. DeVico

Copyright © 2011 Benjamin L. Duell et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Sundquist, A. Rydström, and M. J. Wick, “Immunity to Salmonella from a dendritic point of view,” Cellular Microbiology, vol. 6, no. 1, pp. 1–11, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. J. J. Mans, K. von Lackum, C. Dorsey et al., “The degree of microbiome complexity influences the epithelial response to infection,” BMC Genomics, vol. 10, article 380, 2009. View at Publisher · View at Google Scholar · View at PubMed
  3. S. C. McAllister and A. V. Moses, “Endothelial cell- and lymphocyte-based in vitro systems for understanding KSHV biology,” Current Topics in Microbiology and Immunology, vol. 312, pp. 211–244, 2007. View at Scopus
  4. R. Bartenschlager and V. Lohmann, “Novel cell culture systems for the hepatitis C virus,” Antiviral Research, vol. 52, no. 1, pp. 1–17, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Hemphill, N. Vonlaufen, and A. Naguleswaran, “Cellular and immunological basis of the host-parasite relationship during infection with Neospora caninum,” Parasitology, vol. 133, no. 3, pp. 261–278, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. I. M. Medana and G. D. H. Turner, “Human cerebral malaria and the blood-brain barrier,” International Journal for Parasitology, vol. 36, no. 5, pp. 555–568, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. L. M. Friis, C. Pin, B. M. Pearson, and J. M. Wells, “In vitro cell culture methods for investigating Campylobacter invasion mechanisms,” Journal of Microbiological Methods, vol. 61, no. 2, pp. 145–160, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. J. W. St Geme III, “Molecular and cellular determinants of non-typeable Haemophilus influenzae adherence and invasion,” Cellular Microbiology, vol. 4, no. 4, pp. 191–200, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. A. L. Man, M. E. Prieto-Garcia, and C. Nicoletti, “Improving M cell mediated transport across mucosal barriers: do certain bacteria hold the keys?” Immunology, vol. 113, no. 1, pp. 15–22, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. M. Regoli, C. Borghesi, E. Bertelli, and C. Nicoletti, “Uptake of a gram-positive bacterium (Streptococcus pneumoniae R36a) by the M cells of rabbit Peyer's patches,” Annals of Anatomy, vol. 177, no. 2, pp. 119–124, 1995. View at Scopus
  11. P. Tyrer, A. R. Foxwell, A. W. Cripps, M. A. Apicella, and J. M. Kyd, “Microbial pattern recognition receptors mediate M-cell uptake of a gram-negative bacterium,” Infection and Immunity, vol. 74, no. 1, pp. 625–631, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. A. Sayi, E. Kohler, I. M. Toller et al., “TLR-2-activated B cells suppress Helicobacter-induced preneoplastic gastric immunopathology by inducing T regulatory-1 cells,” Journal of Immunology, vol. 186, no. 2, pp. 878–890, 2011. View at Publisher · View at Google Scholar · View at PubMed
  13. F. Bihl, J. Pecheur, B. Bréart et al., “Primed antigen-specific CD4+ T cells are required for NK cell activation in vivo upon Leishmania major infection,” Journal of Immunology, vol. 185, no. 4, pp. 2174–2181, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. H. Yoo, S. H. Park, S. K. Ye, and M. Kim, “IFN-γ-induced BST2 mediates monocyte adhesion to human endothelial cells,” Cell Immunology, vol. 267, no. 1, pp. 23–29, 2011.
  15. P. C. Delekta, I. J. Apel, S. Gu et al., “Thrombin-dependent NF-κb activation and monocyte/endothelial adhesion are mediated by the CARMA3·Bcl10·MALT1 signalosome,” Journal of Biological Chemistry, vol. 285, no. 53, pp. 41432–41442, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. G. C. Ulett, N. Ketheesan, and R. G. Hirst, “Macrophage-lymphocyte interactions mediate anti-Burkholderia pseudomallei activity,” FEMS Immunology and Medical Microbiology, vol. 21, no. 4, pp. 283–286, 1998.
  17. P. Tippayawat, M. Pinsiri, D. Rinchai et al., “Burkholderia pseudomallei proteins presented by monocyte-derived dendritic cells stimulate human memory T cells in vitro,” Infection and Immunity, vol. 79, no. 1, pp. 305–313, 2011. View at Publisher · View at Google Scholar · View at PubMed
  18. M. C. Berin, D. M. McKay, and M. H. Perdue, “Immune-epithelial interactions in host defense,” American Journal of Tropical Medicine and Hygiene, vol. 60, no. 4, pp. 16–25, 1999.
  19. A. D. Lehmann, N. Daum, M. Bur, C.-M. Lehr, P. Gehr, and B. M. Rothen-Rutishauser, “An in vitro triple cell co-culture model with primary cells mimicking the human alveolar epithelial barrier,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 77, no. 3, pp. 398–406, 2011. View at Publisher · View at Google Scholar · View at PubMed
  20. R. Saito, Y. Ishii, R. Ito et al., “Transplantation of liver organoids in the omentum and kidney,” Artificial Organs, vol. 35, no. 1, pp. 80–83, 2011. View at Publisher · View at Google Scholar · View at PubMed
  21. C. A. Nickerson, E. G. Richter, and C. M. Ott, “Studying host-pathogen interactions in 3-D: organotypic models for infectious disease and drug development,” Journal of Neuroimmune Pharmacology, vol. 2, no. 1, pp. 26–31, 2007. View at Publisher · View at Google Scholar · View at PubMed
  22. N. Jacobs, M. P. Moutschen, E. Franzen-Detrooz, V. Boniver, J. Boniver, and P. Delvenne, “Organotypic culture of HPV-transformed keratinocytes: a model for testing lymphocyte infiltration of (pre)neoplastic lesions of the uterine cervix,” Virchows Archiv, vol. 432, no. 4, pp. 323–330, 1998. View at Publisher · View at Google Scholar
  23. J. Barrila, A. L. Radtke, A. Crabbé et al., “Organotypic 3D cell culture models: using the rotating wall vessel to study host-pathogen interactions,” Nature Reviews Microbiology, vol. 8, no. 11, pp. 791–801, 2010. View at Publisher · View at Google Scholar · View at PubMed
  24. Z. Zhang, A. J. McGoron, E. T. Crumpler, and C. Z. Li, “Co-culture based blood-brain barrier in vitro model, a tissue engineering approach using immortalized cell lines for drug transport study,” Applied Biochemistry and Biotechnology, vol. 163, no. 2, Article ID 278295, 18 pages, 2011. View at Publisher · View at Google Scholar · View at PubMed
  25. Y. Y. Li, J. W. C. Chang, L. L. Hsieh, and K. Y. Yeh, “Neutralization of interleukin (IL)-10 released by monocytes/macrophages enhances the up-regulatory effect of monocyte/macrophage-derived IL-6 on expressions of IL-6 and MUC1, and migration in HT-29 colon cancer cells,” Cellular Immunology, vol. 265, no. 2, pp. 164–171, 2010. View at Publisher · View at Google Scholar · View at PubMed
  26. A. Elkhal, L. Tunggal, and M. Aumailley, “Fibroblasts contribute to the deposition of laminin 5 in the extracellular matrix,” Experimental Cell Research, vol. 296, no. 2, pp. 223–230, 2004. View at Publisher · View at Google Scholar · View at PubMed
  27. A. Seltana, N. Basora, and J. F. Beaulieu, “Intestinal epithelial wound healing assay in an epithelial-mesenchymal co-culture system,” Wound Repair and Regeneration, vol. 18, no. 1, pp. 114–122, 2010. View at Publisher · View at Google Scholar · View at PubMed
  28. B. A. Conway-Myers, “Co-culture update: creating an embryotrophic environment in vitro,” Seminars in Reproductive Endocrinology, vol. 16, no. 3, pp. 175–182, 1998.
  29. N. M. Orsi and J. B. Reischl, “Mammalian embryo co-culture: trials and tribulations of a misunderstood method,” Theriogenology, vol. 67, no. 3, pp. 441–458, 2007. View at Publisher · View at Google Scholar · View at PubMed
  30. M. Butler, Animal Cell Culture and Technology, BIOS Scientific Publishers, London, UK, 2nd edition, 2004.
  31. J. Hytönen, S. Haataja, and J. Finne, “Streptococcus pyogenes glycoprotein-binding strepadhesin activity is mediated by a surface-associated carbohydrate-degrading enzyme, pullulanase,” Infection and Immunity, vol. 71, no. 2, pp. 784–793, 2003. View at Publisher · View at Google Scholar
  32. M. R. Nokhbeh, S. Hazra, D. A. Alexander et al., “Enterovirus 70 binds to different glycoconjugates containing α2,3-linked sialic acid on different cell lines,” Journal of Virology, vol. 79, no. 11, pp. 7087–7094, 2005. View at Publisher · View at Google Scholar · View at PubMed
  33. A. W. Paton, R. Morona, and J. C. Paton, “Bioengineered bugs expressing oligosaccharide receptor mimics: toxin-binding probiotics for treatment and prevention of enteric infections,” Bioengineered Bugs, vol. 1, no. 3, pp. 172–177, 2010. View at Publisher · View at Google Scholar · View at PubMed
  34. O. Fumagalli, B. D. Tall, C. Schipper, and T. A. Oelschlaeger, “N-glycosylated proteins are involved in efficient internalization of Klebsiella pneumoniae by cultured human epithelial cells,” Infection and Immunity, vol. 65, no. 11, pp. 4445–4451, 1997.
  35. J. Mahdavi, B. Sondén, M. Hurtig et al., “Helicobacter pylori sabA adhesin in persistent infection and chronic inflammation,” Science, vol. 297, no. 5581, pp. 573–578, 2002. View at Publisher · View at Google Scholar · View at PubMed
  36. D. J. Holt, L. M. Chamberlain, and D. W. Grainger, “Cell-cell signaling in co-cultures of macrophages and fibroblasts,” Biomaterials, vol. 31, no. 36, pp. 9382–9394, 2010. View at Publisher · View at Google Scholar · View at PubMed
  37. Z. L. Dai, X. L. Li, P. B. Xi, J. Zhang, G. Wu, and W. Y. Zhu, “Metabolism of select amino acids in bacteria from the pig small intestine,” Amino Acids. In press. View at Publisher · View at Google Scholar · View at PubMed
  38. A. K. Johri, V. Patwardhan, and L. C. Paoletti, “Growth rate and oxygen regulate the interactions of group B Streptococcus with polarized respiratory epithelial cells,” Canadian Journal of Microbiology, vol. 51, no. 4, pp. 283–286, 2005. View at Publisher · View at Google Scholar · View at PubMed
  39. A. Bernhardt, D. Kuester, A. Roessner, T. Reinheckel, and S. Krueger, “Cathepsin X-deficient gastric epithelial cells in co-culture with macrophages: characterization of cytokine response and migration capability after Helicobacter pylori infection,” Journal of Biological Chemistry, vol. 285, no. 44, pp. 33691–33700, 2010. View at Publisher · View at Google Scholar · View at PubMed
  40. R. Rochford, M. J. Cannon, R. E. Sabbe et al., “Common and idiosyncratic patterns of cytokine gene expression by Epstein-Barr virus transformed human B cell lines,” Viral Immunology, vol. 10, no. 4, pp. 183–195, 1997.
  41. J. Finke, P. Ternes, W. Lange, R. Mertelsmann, and G. Dolken, “Expression of interleukin 10 in B lymphocytes of different origin,” Leukemia, vol. 7, no. 11, pp. 1852–1857, 1993.
  42. T. T. Sun, H. Zhao, J. Provet, U. Aebi, and X. R. Wu, “Formation of asymmetric unit membrane during urothelial differentiation,” Molecular Biology Reports, vol. 23, no. 1, pp. 3–11, 1996.
  43. X. R. Wu, J. H. Lin, T. Walz et al., “Mammalian uroplakins. A group of highly conserved urothelial differentiation-related membrane proteins,” Journal of Biological Chemistry, vol. 269, no. 18, pp. 13716–13724, 1994.
  44. A. N. Mabbett, G. C. Ulett, R. E. Watts et al., “Virulence properties of asymptomatic bacteriuria Escherichia coli,” International Journal of Medical Microbiology, vol. 299, no. 1, pp. 53–63, 2009. View at Publisher · View at Google Scholar · View at PubMed
  45. J. Valle, A. N. Mabbett, G. C. Ulett et al., “UpaG, a new member of the trimeric autotransporter family of adhesins in uropathogenic Escherichia coli,” Journal of Bacteriology, vol. 190, no. 12, pp. 4147–4161, 2008. View at Publisher · View at Google Scholar · View at PubMed
  46. G. C. Ulett, R. I. Webb, K. B. Ulett et al., “Group B Streptococcus (GBS) urinary tract infection involves binding of GBS to bladder uroepithelium and potent but GBS-specific induction of interleukin 1α,” Journal of Infectious Diseases, vol. 201, no. 6, pp. 866–870, 2010. View at Publisher · View at Google Scholar · View at PubMed
  47. E. D. Lobban, B. A. Smith, G. D. Hall et al., “Uroplakin gene expression by normal and neoplastic human urothelium,” American Journal of Pathology, vol. 153, no. 6, pp. 1957–1967, 1998.
  48. J. Olsburgh, P. Harnden, R. Weeks et al., “Uroplakin gene expression in normal human tissues and locally advanced bladder cancer,” Journal of Pathology, vol. 199, no. 1, pp. 41–49, 2003. View at Publisher · View at Google Scholar · View at PubMed
  49. K. Ogawa, T. T. Sun, and S. M. Cohen, “Analysis of differentiation-associated proteins in rat bladder carcinogenesis,” Carcinogenesis, vol. 17, no. 5, pp. 961–965, 1996. View at Publisher · View at Google Scholar
  50. Y. C. Smith, K. K. Grande, S. B. Rasmussen, and A. D. O'Brien, “Novel three-dimensional organoid model for evaluation of the interaction of uropathogenic Escherichia coli with terminally differentiated human urothelial cells,” Infection and Immunity, vol. 74, no. 1, pp. 750–757, 2006. View at Publisher · View at Google Scholar · View at PubMed
  51. B. P. Lucey, W. A. Nelson-Rees, and G. M. Hutchins, “Henrietta Lacks, HeLa cells, and cell culture contamination,” Archives of Pathology and Laboratory Medicine, vol. 133, no. 9, pp. 1463–1467, 2009.
  52. M. Lacroix, “Persistent use of “false” cell lines,” International Journal of Cancer, vol. 122, no. 1, pp. 1–4, 2008. View at Publisher · View at Google Scholar · View at PubMed
  53. J. G. Rasmussen, O. Frøbert, L. Pilgaard et al., “Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells,” Cytotherapy, vol. 13, no. 3, pp. 318–328, 2011. View at Publisher · View at Google Scholar · View at PubMed
  54. M. Okamura, N. Yokoyama, N. Takabatake, K. Okubo, Y. Ikehara, and I. Igarashi, “Modification of host erythrocyte membranes by trypsin and chymotrypsin treatments and effects on the in vitro growth of bovine and equine Babesia parasites,” Journal of Parasitology, vol. 93, no. 1, pp. 208–211, 2007. View at Publisher · View at Google Scholar · View at PubMed
  55. R. Matěj, P. Manďáková, I. Netíková, P. Poučková, and T. Olejár, “Proteinase-activated receptor-2 expression in breast cancer and the role of trypsin on growth and metabolism of breast cancer cell line MDA MB-231,” Physiological Research, vol. 56, no. 4, pp. 475–484, 2007.
  56. A. Bengrine, J. Li, L. L. Hamm, and M. S. Awayda, “Indirect activation of the epithelial Na+ channel by trypsin,” Journal of Biological Chemistry, vol. 282, no. 37, pp. 26884–26896, 2007. View at Publisher · View at Google Scholar · View at PubMed
  57. L. C. Hendricks, S. L. McClanahan, G. E. Palade, and M. G. Farquhar, “Brefeldin A affects early events but does not affect late events along the exocytic pathway in pancreatic acinar cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 15, pp. 7242–7246, 1992. View at Publisher · View at Google Scholar
  58. A. Dinter and E. G. Berger, “Golgi-disturbing agents,” Histochemistry and Cell Biology, vol. 109, no. 5-6, pp. 571–590, 1998. View at Publisher · View at Google Scholar
  59. L. Müller, M. Riediker, P. Wick, M. Mohr, P. Gehr, and B. Rothen-Rutishauser, “Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways,” Journal of the Royal Society Interface, vol. 7, no. 1, pp. S27–S40, 2010. View at Publisher · View at Google Scholar · View at PubMed
  60. D. Richardt-Pargmann, M. Wechsler, A. M. Krieg, J. Vollmer, and M. Jurk, “Positive T cell co-stimulation by TLR7/8 ligands is dependent on the cellular environment,” Immunobiology, vol. 216, no. 1-2, pp. 12–23, 2011. View at Publisher · View at Google Scholar · View at PubMed
  61. S. Nagamori, S. Hasumura, T. Matsuura, H. Aizaki, and M. Kawada, “Developments in bioartificial liver research: concepts, performance, and applications,” Journal of Gastroenterology, vol. 35, no. 7, pp. 493–503, 2000.
  62. M. Saito, T. Matsuura, T. Masaki et al., “Reconstruction of liver organoid using a bioreactor,” World Journal of Gastroenterology, vol. 12, no. 12, pp. 1881–1888, 2006.
  63. A. Crabbé, S. F. Sarker, R. Van Houdt et al., “Alveolar epithelium protects macrophages from quorum sensing-induced cytotoxicity in a three-dimensional co-culture model,” Cellular Microbiology, vol. 13, no. 3, pp. 469–481, 2011. View at Publisher · View at Google Scholar · View at PubMed
  64. G. C. Ulett and E. E. Adderson, “Regulation of apoptosis by gram-positive bacteria: mechanistic diversity and consequences for immunity,” Current Immunology Reviews, vol. 2, no. 2, pp. 119–141, 2006. View at Publisher · View at Google Scholar · View at PubMed
  65. G. C. Ulett and E. E. Adderson, “Nitric oxide is a key determinant of group B Streptococcus-induced murine macrophage apoptosis,” Journal of Infectious Diseases, vol. 191, no. 10, pp. 1761–1770, 2005. View at Publisher · View at Google Scholar · View at PubMed
  66. G. C. Ulett, J. F. Bohnsack, J. Armstrong, and E. E. Adderson, “β-hemolysin-independent induction of apoptosis of macrophages infected with serotype III group B Streptococcus,” Journal of Infectious Diseases, vol. 188, no. 7, pp. 1049–1053, 2003. View at Publisher · View at Google Scholar · View at PubMed
  67. T. Iwahori, T. Matsuura, H. Maehashi et al., “CYP3A4 inducible model for in vitro analysis of human drug metabolism using a bioartificial liver,” Hepatology, vol. 37, no. 3, pp. 665–673, 2003. View at Publisher · View at Google Scholar · View at PubMed
  68. T. Notani, M. J. Tabata, H. Iseki, O. Baba, and Y. Takano, “Introduction of a three-dimensional and layered (TDL) culture, a novel primary co-culture method for ameloblasts and pulp-derived cells,” Archives of Histology and Cytology, vol. 72, no. 3, pp. 187–198, 2009. View at Publisher · View at Google Scholar
  69. T. Spottl, M. Hausmann, M. Gunckel et al., “A new organotypic model to study cell interactions in the intestinal mucosa,” European Journal of Gastroenterology and Hepatology, vol. 18, no. 8, pp. 901–909, 2006. View at Publisher · View at Google Scholar
  70. V. A. Patel, D. J. Lee, A. Longacre-Antoni et al., “Apoptotic and necrotic cells as sentinels of local tissue stress and inflammation: response pathways initiated in nearby viable cells review,” Autoimmunity, vol. 42, no. 4, pp. 317–321, 2009. View at Publisher · View at Google Scholar · View at PubMed
  71. D. E. Bockman, W. R. Boydston, and D. H. Beezhold, “The role of epithelial cells in gut-associated immune reactivity,” Annals of the New York Academy of Sciences, vol. 409, pp. 129–144, 1983.
  72. D. M. Bull and M. A. Bookman, “Isolation and functional characterization of human intestinal mucosal lymphoid cells,” Journal of Clinical Investigation, vol. 59, no. 5, pp. 966–974, 1977.
  73. J. P. Golder and W. F. Doe, “Isolation and preliminary characterization of human intestinal macrophages,” Gastroenterology, vol. 84, no. 4, pp. 795–802, 1983.
  74. P. Sansonetti, “Phagocytosis of bacterial pathogens: implications in the host response,” Seminars in Immunology, vol. 13, no. 6, pp. 381–390, 2001. View at Publisher · View at Google Scholar · View at PubMed
  75. C. R. Wira, J. V. Fahey, C. L. Sentman, P. A. Pioli, and L. Shen, “Innate and adaptive immunity in female genital tract: cellular responses and interactions,” Immunological Reviews, vol. 206, pp. 306–335, 2005. View at Publisher · View at Google Scholar · View at PubMed
  76. N. Brunetti-Pierri and P. Ng, “Progress and prospects: gene therapy for genetic diseases with helper-dependent adenoviral vectors,” Gene Therapy, vol. 15, no. 8, pp. 553–560, 2008. View at Publisher · View at Google Scholar · View at PubMed
  77. S. K. Campos and M. A. Barry, “Current advances and future challenges in adenoviral vector biology and targeting,” Current Gene Therapy, vol. 7, no. 3, pp. 189–204, 2007. View at Publisher · View at Google Scholar
  78. B. H. Lee, R. Kushwah, J. Wu et al., “Adenoviral vectors stimulate innate immune responses in macrophages through cross-talk with epithelial cells,” Immunology Letters, vol. 134, no. 1, pp. 93–102, 2010. View at Publisher · View at Google Scholar · View at PubMed
  79. E. Van Hoffen, N. M. Korthagen, S. De Kivit et al., “Exposure of intestinal epithelial cells to UV-killed lactobacillus GG but not bifidobacterium breve enhances the effector immune response in vitro,” International Archives of Allergy and Immunology, vol. 152, no. 2, pp. 159–168, 2010. View at Publisher · View at Google Scholar · View at PubMed
  80. C. Wiegand, M. Abel, P. Ruth, and U. C. Hipler, “HaCaT keratinocytes in co-culture with Staphylococcus aureus can be protected from bacterial damage by polihexanide,” Wound Repair and Regeneration, vol. 17, no. 5, pp. 730–738, 2009. View at Publisher · View at Google Scholar · View at PubMed
  81. A. Trampuz, K. E. Piper, J. M. Steckelberg, and R. Patel, “Effect of gamma irradiation on viability and DNA of Staphylococcus epidermidis and Escherichia coli,” Journal of Medical Microbiology, vol. 55, no. 9, pp. 1271–1275, 2006. View at Publisher · View at Google Scholar · View at PubMed
  82. A. Ruiz-Bravo, C. Bujalance, F. Romero, E. Moreno, and M. Jimenez-Valera, “Immunomodulation by Yersinia enterocolitica: comparison of live and heat-killed bacteria,” FEMS Immunology and Medical Microbiology, vol. 39, no. 3, pp. 229–233, 2003. View at Publisher · View at Google Scholar
  83. K. L. Bost, J. L. Bento, C. C. Petty, L. W. Schrum, M. C. Hudson, and I. Marriott, “Monocyte chemoattractant protein-1 expression by osteoblasts following infection with Staphylococcus aureus or Salmonella,” Journal of Interferon and Cytokine Research, vol. 21, no. 5, pp. 297–304, 2001. View at Publisher · View at Google Scholar · View at PubMed
  84. U. Hofer, A. D. Lehmann, E. Waelti, M. Amacker, P. Gehr, and B. Rothen-Rutishauser, “Virosomes can enter cells by non-phagocytic mechanisms U. Hofer et al,” Journal of Liposome Research, vol. 19, no. 4, pp. 301–309, 2009. View at Publisher · View at Google Scholar · View at PubMed