About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 860578, 8 pages
http://dx.doi.org/10.1155/2011/860578
Review Article

Therapeutic Implications of Mesenchymal Stem Cells in Liver Injury

1GI & Liver Stem Cell Research Group (GILSteR), Department of Internal Medicine and Gastroenterology, Gemelli Hospital, Largo A. Gemelli 8, 00168 Rome, Italy
2Institute of Anatomy and Cell Biology, Catholic Univeristy of the Sacred Heart, Largo F. Vito 1, 00168 Rome, Italy
3Medical Research Foundation ONLUS, Galleria falcone Borsellino 2, Bologna, Italy
4Department of Surgical Sciences, Gemelli Hospital, Largo A. Gemelli 8, 00168 Rome, Italy

Received 15 July 2011; Revised 17 October 2011; Accepted 17 October 2011

Academic Editor: Ken-ichi Isobe

Copyright © 2011 Maria Ausiliatrice Puglisi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. J. Forbes, “Stem cell therapy for chronic liver disease—choosing the right tools for the job,” Gut, vol. 57, no. 2, pp. 153–155, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. M. Muraca, “Evolving concepts in cell therapy of liver disease and current clinical perspectives,” Digestive and Liver Disease, vol. 43, no. 3, pp. 180–187, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. Y. M. Wu, B. Joseph, E. Berishvili, V. Kumaran, and S. Gupta, “Hepatocyte transplantation and drug-induced perturbations in liver cell compartments,” Hepatology, vol. 47, no. 1, pp. 279–287, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. T. Kisseleva, E. Gigante, and D. A. Brenner, “Recent advances in liver stem cell therapy,” Current Opinion in Gastroenterology, vol. 26, no. 4, pp. 395–402, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. B. E. Petersen, W. C. Bowen, K. D. Patrene et al., “Bone marrow as a potential source of hepatic oval cells,” Science, vol. 284, no. 5417, pp. 1168–1170, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Wang, H. Willenbring, Y. Akkari et al., “Cell fusion is the principal source of bone-marrow-derived hepatocytes,” Nature, vol. 422, no. 6934, pp. 897–901, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. M. R. Alison, S. Islam, and S. Lim, “Stem cells in liver regeneration, fibrosis and cancer: the good, the bad and the ugly,” Journal of Pathology, vol. 217, no. 2, pp. 282–298, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. A. Banas, T. Teratani, Y. Yamamoto et al., “Rapid hepatic fate specification of adipose-derived stem cells and their therapeutic potential for liver failure,” Journal of Gastroenterology and Hepatology, vol. 24, no. 1, pp. 70–77, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. K. A. Cho, S. Y. Ju, S. J. Cho et al., “Mesenchymal stem cells showed the highest potential for the regeneration of injured liver tissue compared with other subpopulations of the bone marrow,” Cell Biology International, vol. 33, no. 7, pp. 772–777, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. T. K. Kuo, S. P. Hung, C. H. Chuang et al., “Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells,” Gastroenterology, vol. 134, no. 7, pp. 2111–2121, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. A. Banas, T. Teratani, Y. Yamamoto et al., “IFATS collection: in vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury,” Stem Cells, vol. 26, no. 10, pp. 2705–2712, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. P. Kharaziha, P. M. Hellström, B. Noorinayer et al., “Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I-II clinical trial,” European Journal of Gastroenterology and Hepatology, vol. 21, no. 10, pp. 1199–1205, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. L. Valfrè Di Bonzo, I. Ferrero, C. Cravanzola et al., “Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine: engraftment and hepatocyte differentiation versus profibrogenic potential,” Gut, vol. 57, no. 2, pp. 223–231, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. V. Sordi and L. Piemonti, “Therapeutic plasticity of stem cells and allograft tolerance,” Cytotherapy, vol. 13, no. 6, pp. 647–670, 2011.
  15. F. C. Popp, P. Renner, E. Eggenhofer et al., “Mesenchymal stem cells as immunomodulators after liver transplantation,” Liver Transplantation, vol. 15, no. 10, pp. 1192–1198, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. P. Zhou, S. Hohm, Y. Olusanya, D. A. Hess, and J. A. Nolta, “Human progenitor cells with high aldehyde dehydrogenase activity efficiently engraft into damaged liver in a nove model,” Hepatology, vol. 49, no. 6, pp. 1992–2000, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. A. J. Friedenstein, “Osteogenetic activity of transplanted transitional epithelium,” Acta Anatomica, vol. 45, pp. 31–59, 1961. View at Scopus
  18. M. A. Puglisi, N. Saulnier, A. C. Piscaglia, P. Tondi, S. Agnes, and A. Gasbarrini, “Adipose tissue-derived mesenchymal stem cells and hepatic differentiation: old concepts and future perspectives,” European Review for Medical and Pharmacological Sciences, vol. 15, no. 4, pp. 355–364, 2011.
  19. N. Saulnier, M. A. Puglisi, W. Lattanzi et al., “Gene profiling of bone marrow- and adipose tissue-derived stromal cells: a key role of Kruppel-like factor 4 in cell fate regulation,” Cytotherapy, vol. 13, no. 3, pp. 329–340, 2011. View at Publisher · View at Google Scholar · View at PubMed
  20. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Dorshkind, “Regulation of hemopoiesis by bone marrow stromal cells and their products,” Annual Review of Immunology, vol. 8, pp. 111–137, 1990. View at Scopus
  22. S. E. Haynesworth, M. A. Baber, and A. I. Caplan, “Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1α,” Journal of Cellular Physiology, vol. 166, no. 3, pp. 585–592, 1996. View at Publisher · View at Google Scholar · View at Scopus
  23. D. van Poll, B. Parekkadan, C. H. Cho et al., “Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo,” Hepatology, vol. 47, no. 5, pp. 1634–1643, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. A. E. Balber, “Concise review: aldehyde dehydrogenase bright stem and progenitor cell populations from normal tissues: characteristics, activities, and emerging uses in regenerative medicine,” Stem Cells, vol. 29, no. 4, pp. 570–575, 2011.
  25. L. A. Ortiz, M. DuTreil, C. Fattman et al., “Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 26, pp. 11002–11007, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. P. Hematti, “Role of mesenchymal stromal cells in solid organ transplantation,” Transplantation Reviews, vol. 22, no. 4, pp. 262–273, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. J. Kiss, S. V. Urbán, V. Dudics, V. Vas, and F. Uher, “Mesenchymal stem cells and the immune system—immunosuppression without drugs,” Orvosi Hetilap, vol. 149, no. 8, pp. 339–346, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. W. Deng, Q. Han, L. Liao et al., “Allogeneic bone marrow-derived flk-1+Sca-1- mesenchymal stem cells leads to stable mixed chimerism and donor-specific tolerance,” Experimental Hematology, vol. 32, no. 9, pp. 861–867, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. L. A. Ortiz, F. Gambelli, C. McBride et al., “Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 14, pp. 8407–8411, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. J. Sanchez-Ramos, S. Song, F. Cardozo-Pelaez et al., “Adult bone marrow stromal cells differentiate into neural cells in vitro,” Experimental Neurology, vol. 164, no. 2, pp. 247–256, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. K. Sugaya, “Potential use of stem cells in neuroreplacement therapies for neurodegenerative diseases,” International Review of Cytology, vol. 228, pp. 1–30, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Taléns-Visconti, A. Bonora, R. Jover et al., “Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells,” World Journal of Gastroenterology, vol. 12, no. 36, pp. 5834–5845, 2006. View at Scopus
  33. S. N. Shu, L. Wei, J. H. Wang, Y. T. Zhan, H. S. Chen, and Y. Wang, “Hepatic differentiation capability of rat bone marrow-derived mesenchymal stem cells and hematopoietic stem cells,” World Journal of Gastroenterology, vol. 10, no. 19, pp. 2818–2822, 2004. View at Scopus
  34. N. D. Theise, S. Badve, R. Saxena et al., “Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation,” Hepatology, vol. 31, no. 1, pp. 235–240, 2000. View at Scopus
  35. M. R. Alison, R. Poulsom, R. Jeffery et al., “Hepatocytes from non-hepatic adult stem cells,” Nature, vol. 406, no. 6793, p. 257, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. M. J. Seo, S. Y. Suh, Y. C. Bae, and J. S. Jung, “Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo,” Biochemical and Biophysical Research Communications, vol. 328, no. 1, pp. 258–264, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. R. Taléns-Visconti, A. Bonora, R. Jover et al., “Human mesenchymal stem cells from adipose tissue: differentiation into hepatic lineage,” Toxicology in Vitro, vol. 21, no. 2, pp. 324–329, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. H. Aurich, M. Sgodda, P. Kaltwaßer et al., “Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo,” Gut, vol. 58, no. 4, pp. 570–581, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. I. Aurich, L. P. Mueller, H. Aurich et al., “Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers,” Gut, vol. 56, no. 3, pp. 405–415, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. N. Saulnier, A. C. Piscaglia, M. A. Puglisi et al., “Molecular mechanisms underlying human adipose tissue-derived stromal cells differentiation into a hepatocyte-like phenotype,” Digestive and Liver Disease, vol. 42, no. 12, pp. 895–901, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. Y. Yamamoto, A. Banas, S. Murata et al., “A comparative analysis of the transcriptome and signal pathways in hepatic differentiation of human adipose mesenchymal stem cells,” FEBS Journal, vol. 275, no. 6, pp. 1260–1273, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. K. Le Blanc and O. Ringdén, “Mesenchymal stem cells: properties and role in clinical bone marrow transplantation,” Current Opinion in Immunology, vol. 18, no. 5, pp. 586–591, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. K. Le Blanc and O. Ringdén, “Immunomodulation by mesenchymal stem cells and clinical experience,” Journal of International Medicine, vol. 262, no. 5, pp. 509–525, 2007.
  44. S. Aggarwal and M. F. Pittenger, “Human mesenchymal stem cells modulate allogeneic immune cell responses,” Blood, vol. 105, no. 4, pp. 1815–1822, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. A. Augello, R. Tasso, S. M. Negrini et al., “Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway,” European Journal of Immunology, vol. 35, no. 5, pp. 1482–1490, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. A. Corcione, F. Benvenuto, E. Ferretti et al., “Human mesenchymal stem cells modulate B-cell functions,” Blood, vol. 107, no. 1, pp. 367–372, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. G. M. Spaggiari, H. Abdelrazik, F. Becchetti, and L. Moretta, “MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2,” Blood, vol. 113, no. 26, pp. 6576–6583, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. G. M. Spaggiari, A. Capobianco, H. Abdelrazik, F. Becchetti, M. C. Mingari, and L. Moretta, “Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2,” Blood, vol. 111, no. 3, pp. 1327–1333, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. L. Raffaghello, G. Bianchi, M. Bertolotto et al., “Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche,” Stem Cells, vol. 26, no. 1, pp. 151–162, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. H. K. Salem and C. Thiemermann, “Mesenchymal stromal cells: current understanding and clinical status,” Stem Cells, vol. 28, no. 3, pp. 585–596, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. K. Ley, C. Laudanna, M. I. Cybulsky, and S. Nourshargh, “Getting to the site of inflammation: the leukocyte adhesion cascade updated,” Nature Reviews Immunology, vol. 7, no. 9, pp. 678–689, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. H. Spring, T. Schüler, B. Arnold, G. J. Hämmerling, and R. Ganss, “Chemokines direct endothelial progenitors into tumor neovessels,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 50, pp. 18111–18116, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. M. Honczarenko, Y. Le, M. Swierkowski, I. Ghiran, A. M. Glodek, and L. E. Silberstein, “Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors,” Stem Cells, vol. 24, no. 4, pp. 1030–1041, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. J. Ringe, S. Strassburg, K. Neumann et al., “Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2,” Journal of Cellular Biochemistry, vol. 101, no. 1, pp. 135–146, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. T. Lapidot, “Mechanism of human stem cell migration and repopulation of NOD/SCID and B2mnull NOD/SCID mice: the role of SDF-1/CXCR4 interactions,” Annals of the New York Academy of Sciences, vol. 938, pp. 83–95, 2001. View at Scopus
  56. P. A. Conget and J. J. Minguell, “Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells,” Journal of Cellular Physiology, vol. 181, no. 1, pp. 67–73, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. M. K. Majumdar, M. Keane-Moore, D. Buyaner et al., “Characterization and functionality of cell surface molecules on human mesenchymal stem cells,” Journal of Biomedical Science, vol. 10, no. 2, pp. 228–241, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. V. Sordi, M. L. Malosio, F. Marchesi et al., “Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets,” Blood, vol. 106, no. 2, pp. 419–427, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. G. S. Kansas, “Selectins and their ligands: current concepts and controversies,” Blood, vol. 88, no. 9, pp. 3259–3287, 1996. View at Scopus
  60. K. M. Schweitzer, A. M. Dräger, P. Van Der Valk et al., “Constitutive expression of E-selectin and vascular cell adhesion molecule-1 on endothelial cells of hematopoietic tissues,” American Journal of Pathology, vol. 148, no. 1, pp. 165–175, 1996. View at Scopus
  61. B. Rüster, S. Göttig, R. J. Ludwig et al., “Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells,” Blood, vol. 108, no. 12, pp. 3938–3944, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. B. Parekkadan, D. van Poll, K. Suganuma et al., “Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure,” PLoS ONE, vol. 2, no. 9, article e941, 2007. View at Publisher · View at Google Scholar · View at PubMed
  63. H. Yagi, B. Parekkadan, K. Suganuma et al., “Long-term superior performance of a stem cell/hepatocyte device for the treatment of acute liver failure,” Tissue Engineering Part A, vol. 15, no. 11, pp. 3377–3388, 2009. View at Publisher · View at Google Scholar · View at PubMed
  64. H. Kanazawa, Y. Fujimoto, T. Teratani et al., “Bone marrow-derived mesenchymal stem cells ameliorate hepatic ischemia reperfusion injury in a rat model,” PLoS ONE, vol. 6, no. 4, article e19195, 2011. View at Publisher · View at Google Scholar · View at PubMed
  65. L. J. Dai, H. Y. Li, L. X. Guan, G. Ritchie, and J. X. Zhou, “The therapeutic potential of bone marrow-derived mesenchymal stem cells on hepatic cirrhosis,” Stem Cell Research, vol. 2, no. 1, pp. 16–25, 2008.
  66. M. Mohamadnejad, K. Alimoghaddam, M. Mohyeddin-Bonab et al., “Phase 1 trial of autologous bone marrow mesenchymal stem cell transplantation in patients with decompensated liver cirrhosis,” Archives of Iranian Medicine, vol. 10, no. 4, pp. 459–466, 2007.
  67. P. C. Tsai, T. W. Fu, Y. M. A. Chen et al., “The therapeutic potential of human umbilical mesenchymal stem cells from Wharton's jelly in the treatment of rat liver fibrosis,” Liver Transplantation, vol. 15, no. 5, pp. 484–495, 2009. View at Publisher · View at Google Scholar · View at PubMed
  68. R. Higashiyama, Y. Inagaki, Y. Y. Hong et al., “Bone marrow-derived cells express matrix metalloproteinases and contribute to regression of liver fibrosis in mice,” Hepatology, vol. 45, no. 1, pp. 213–222, 2007. View at Publisher · View at Google Scholar · View at PubMed
  69. B. Parekkadan, D. van Poll, Z. Megeed et al., “Immunomodulation of activated hepatic stellate cells by mesenchymal stem cells,” Biochemical and Biophysical Research Communications, vol. 363, no. 2, pp. 247–252, 2007. View at Publisher · View at Google Scholar · View at PubMed
  70. R.-L. Pan, P. Wang, L.-X. Xiang, and J.-Z. Shao, “Delta-like 1 serves as a new target and contributor to liver fibrosis down-regulated by mesenchymal stem cell transplantation,” Journal of Biological Chemistry, vol. 286, no. 14, pp. 12340–12348, 2011. View at Publisher · View at Google Scholar · View at PubMed
  71. M. Mohamadnejad, M. Namiri, M. Bagheri et al., “Phase 1 human trial of autologous bone marrow-hematopoietic stem cell transplantation in patients with decompensated cirrhosis,” World Journal of Gastroenterology, vol. 13, no. 24, pp. 3359–3363, 2007.
  72. A. B. Carvalho, L. F. Quintanilha, J. V. Dias et al., “Bone marrow multipotent mesenchymal stromal cells do not reduce fibrosis or improve function in a rat model of severe chronic liver injury,” Stem Cells, vol. 26, no. 5, pp. 1307–1314, 2008. View at Publisher · View at Google Scholar · View at PubMed
  73. F. Casiraghi, N. Azzollini, P. Cassis et al., “Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells,” Journal of Immunology, vol. 181, no. 6, pp. 3933–3946, 2008.
  74. H. Pan, K. Zhao, L. Wang et al., “Mesenchymal stem cells enhance the induction of mixed chimerism and tolerance to rat hind-limb allografts after bone marrow transplantation,” Journal of Surgical Research, vol. 160, no. 2, pp. 315–324, 2010. View at Publisher · View at Google Scholar · View at PubMed
  75. K. Le Blanc, H. Samuelsson, B. Gustafsson et al., “Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells,” Leukemia, vol. 21, no. 8, pp. 1733–1738, 2007. View at Publisher · View at Google Scholar · View at PubMed
  76. T. Kawai, A. B. Cosimi, T. R. Spitzer et al., “HLA-mismatched renal transplantation without maintenance immunosuppression,” New England Journal of Medicine, vol. 358, no. 4, pp. 353–361, 2008. View at Publisher · View at Google Scholar · View at PubMed
  77. S. A. Patel, J. R. Meyer, S. J. Greco, K. E. Corcoran, M. Bryan, and P. Rameshwar, “Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-β,” Journal of Immunology, vol. 184, no. 10, pp. 5885–5894, 2010. View at Publisher · View at Google Scholar · View at PubMed
  78. T. Murayama, O. M. Tepper, M. Silver, et al., “Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo,” Experimental Hematology, vol. 30, no. 8, pp. 967–972, 2002.
  79. F. Ghiringhelli, C. Ménard, M. Terme, et al., “CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner,” Journal of Experimental Medicine, vol. 202, no. 8, pp. 1075–1085, 2005.
  80. A. E. Karnoub, A. B. Dash, A. P. Vo et al., “Mesenchymal stem cells within tumour stroma promote breast cancer metastasis,” Nature, vol. 449, no. 7162, pp. 557–563, 2007. View at Publisher · View at Google Scholar · View at PubMed
  81. R. Jiang, W. Xu, W. Zhu et al., “Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo,” Experimental and Molecular Pathology, vol. 80, no. 3, pp. 267–274, 2006. View at Publisher · View at Google Scholar · View at PubMed
  82. F. Djouad, P. Plence, C. Bony et al., “Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals,” Blood, vol. 102, no. 10, pp. 3837–3844, 2003. View at Publisher · View at Google Scholar · View at PubMed
  83. J. M. Yu, E. S. Jun, Y. C. Bae, and J. S. Jung, “Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo,” Stem Cells and Development, vol. 17, no. 3, pp. 463–473, 2008. View at Publisher · View at Google Scholar · View at PubMed
  84. G. Lin, R. Yang, L. Banie et al., “Effects of transplantation of adipose tissue-derived stem cells on prostate tumor,” Prostate, vol. 70, no. 10, pp. 1066–1073, 2010. View at Publisher · View at Google Scholar · View at PubMed
  85. K. Shinagawa, Y. Kitadai, M. Tanaka et al., “Mesenchymal stem cells enhance growth and metastasis of colon cancer,” International Journal of Cancer, vol. 127, no. 10, pp. 2323–2333, 2010. View at Publisher · View at Google Scholar · View at PubMed
  86. A. Al-Khaldi, N. Eliopoulos, D. Martineau, L. Lejeune, K. Lachapelle, and J. Galipeau, “Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic response in vivo,” Gene Therapy, vol. 10, no. 8, pp. 621–629, 2003. View at Publisher · View at Google Scholar · View at PubMed
  87. T. Kinnaird, E. Stabile, M. S. Burnett et al., “Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms,” Circulation Research, vol. 94, no. 5, pp. 678–685, 2004. View at Publisher · View at Google Scholar · View at PubMed
  88. P. J. Mishra, P. J. Mishra, R. Humeniuk et al., “Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells,” Cancer Research, vol. 68, no. 11, pp. 4331–4339, 2008. View at Publisher · View at Google Scholar · View at PubMed
  89. A. Y. Khakoo, S. Pati, S. A. Anderson et al., “Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma,” Journal of Experimental Medicine, vol. 203, no. 5, pp. 1235–1247, 2006. View at Publisher · View at Google Scholar · View at PubMed
  90. L. Qiao, Z. Xu, T. Zhao et al., “Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model,” Cell Research, vol. 18, no. 4, pp. 500–507, 2008. View at Publisher · View at Google Scholar · View at PubMed
  91. L. Qiao, Z. L. Xu, T. J. Zhao, L. H. Ye, and X. D. Zhang, “Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling,” Cancer Letters, vol. 269, no. 1, pp. 67–77, 2008. View at Publisher · View at Google Scholar · View at PubMed
  92. Y. Zhu, Z. Sun, Q. Han et al., “Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1,” Leukemia, vol. 23, no. 5, pp. 925–933, 2009. View at Publisher · View at Google Scholar · View at PubMed
  93. B. Cousin, E. Ravet, S. Poglio et al., “Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo,” PLoS ONE, vol. 4, no. 7, Article ID e6278, 2009. View at Publisher · View at Google Scholar · View at PubMed
  94. Y. R. Lu, Y. Yuan, X. J. Wang et al., “The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo,” Cancer Biology and Therapy, vol. 7, no. 2, pp. 245–251, 2008.
  95. P. Secchiero, S. Zorzet, C. Tripodo et al., “Human bone marrow mesenchymal stem cells display anti-cancer activity in SCID mice bearing disseminated non-hodgkin's lymphoma xenografts,” PLoS ONE, vol. 5, no. 6, Article ID e11140, 2010. View at Publisher · View at Google Scholar · View at PubMed
  96. S. Kidd, L. Caldwell, M. Dietrich et al., “Mesenchymal stromal cells alone or expressing interferon-β suppress pancreatic tumors in vivo, an effect countered by anti-inflammatory treatment,” Cytotherapy, vol. 12, no. 5, pp. 615–625, 2010. View at Publisher · View at Google Scholar · View at PubMed
  97. A. Nakamizo, F. Marini, T. Amano et al., “Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas,” Cancer Research, vol. 65, no. 8, pp. 3307–3318, 2005.
  98. P. Gao, Q. Ding, Z. Wu, H. Jiang, and Z. Fang, “Therapeutic potential of human mesenchymal stem cells producing IL-12 in a mouse xenograft model of renal cell carcinoma,” Cancer Letters, vol. 290, no. 2, pp. 157–166, 2010.
  99. M. T. Abdel Aziz, M. F. El Asmar, H. M. Atta et al., “Efficacy of mesenchymal stem cells in suppression of hepatocarcinorigenesis in rats: possible role of Wnt signaling,” Journal of Experimental and Clinical Cancer Research, vol. 30, no. 1, p. 49, 2011. View at Publisher · View at Google Scholar · View at PubMed