About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 954602, 8 pages
http://dx.doi.org/10.1155/2011/954602
Review Article

Cytotoxic CD4 T Cells in Antiviral Immunity

Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA

Received 2 July 2011; Accepted 9 September 2011

Academic Editor: Julie Curtsinger

Copyright © 2011 Nikki B. Marshall and Susan L. Swain. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Wagner, A. Starzinski-Powitz, H. Jung, and M. Roellinghoff, “Induction of I region-restricted hapten-specific cytotoxic T lymphocytes,” Journal of Immunology, vol. 119, no. 4, pp. 1365–1368, 1977. View at Scopus
  2. C. Feighery and P. Stastny, “HLA-D region-associated determinants serve as targets for human cell-mediated lysis,” Journal of Experimental Medicine, vol. 149, no. 2, pp. 485–494, 1979. View at Scopus
  3. B. Fleischer, “Acquisition of specific cytotoxic activity by human T4+ T lymphocytes in culture,” Nature, vol. 308, no. 5957, pp. 365–367, 1984. View at Publisher · View at Google Scholar · View at Scopus
  4. J. P. Tite and C. A. Janeway Jr, “Cloned helper T cells can kill B lymphoma cells in the presence of specific antigen: Ia restriction and cognate vs. noncognate interactions in cytolysis,” European Journal of Immunology, vol. 14, no. 10, pp. 878–886, 1984. View at Scopus
  5. M. M. Maimone, L. A. Morrison, V. L. Braciale, and T. J. Braciale, “Features of target cell lysis by class I and class II MHC-restricted cytolytic T lymphocytes,” Journal of Immunology, vol. 137, no. 11, pp. 3639–3643, 1986. View at Scopus
  6. A. E. Lukacher, L. A. Morrison, and V. L. Braciale, “Malissen B and braciale TJ: expression of specific cytolytic activity by H-21 region-restricted, influenza virus-specific T lymphocyte clones,” Journal of Experimental Medicine, vol. 162, no. 1, pp. 171–187, 1985. View at Scopus
  7. J. J. Zaunders, W. B. Dyer, B. Wang et al., “Identification of circulating antigen-specific CD4+ T lymphocytes with a CCR5+, cytotoxic phenotype in an HIV-1 long-term nonprogressor and in CMV infection,” Blood, vol. 103, no. 6, pp. 2238–2247, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. E. M. van Leeuwen, E. B. Remmerswaal, M. T. Vossen et al., “Emergence of a CD4+CD28- granzyme B+, cytomegalovirus-specific T cell subset after recovery of primary cytomegalovirus infection,” Journal of Immunology, vol. 173, no. 3, pp. 1834–1841, 2004. View at Scopus
  9. A. Sáez-Borderías, M. Gumá, A. Angulo, B. Bellosillo, D. Pende, and M. López-Botet, “Expression and function of NKG2D in CD4+ T cells specific for human cytomegalovirus,” European Journal of Immunology, vol. 36, no. 12, pp. 3198–3206, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. A. Suni, S. A. Ghanekar, D. W. Houck et al., “CD4+CD8dim T lymphocytes exhibit enhanced cytokine expression, proliferation and cytotoxic activity in response to HCMV and HIV-1 antigens,” European Journal of Immunology, vol. 31, no. 8, pp. 2512–2520, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Aslan, C. Yurdaydin, J. Wiegand et al., “Cytotoxic CD4+ T cells in viral hepatitis,” Journal of Viral Hepatitis, vol. 13, no. 8, pp. 505–514, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Appay, J. J. Zaunders, L. Papagno et al., “Characterization of CD4+ CTLs ex vivo,” Journal of Immunology, vol. 168, no. 11, pp. 5954–5958, 2002. View at Scopus
  13. P. J. Norris, H. F. Moffett, O. O. Yang et al., “Beyond help: direct effector functions of human immunodeficiency virus type 1-specific CD4+ T cells,” Journal of Virology, vol. 78, no. 16, pp. 8844–8851, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. E. R. Jellison, S. K. Kim, and R. M. Welsh, “Cutting edge: MHC class II-restricted killing in vivo during viral infection,” Journal of Immunology, vol. 174, no. 2, pp. 614–618, 2005. View at Scopus
  15. K. A. Stuller and E. Flaño, “CD4 T cells mediate killing during persistent gammaherpesvirus 68 infection,” Journal of Virology, vol. 83, no. 9, pp. 4700–4703, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Khanna, S. R. Burrows, P. M. Steigerwald-Mullen, D. J. Moss, M. G. Kurilla, and L. Cooper, “Targeting Epstein-barr virus nuclear antigen 1 (EBNA1) through the class II pathway restores immune recognition by EBNA1-specific cytotoxic T lymphocytes: evidence for HLA-DM-independent processing,” International Immunology, vol. 9, no. 10, pp. 1537–1543, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Adhikary, U. Behrends, A. Moosmann, K. Witter, G. W. Bornkamm, and J. Mautner, “Control of Epstein-barr virus infection in vitro by T helper cells specific for virion glycoproteins,” Journal of Experimental Medicine, vol. 203, no. 4, pp. 995–1006, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Landais, X. Saulquin, E. Scotet et al., “Direct killing of Epstein-barr virus (EBV)-infected B cells by CD4 T cells directed against the EBV lytic protein BHRF1,” Blood, vol. 103, no. 4, pp. 1408–1416, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. H. M. Long, T. A. Haigh, N. H. Gudgeon et al., “CD4+ T-cell responses to Epstein-barr virus (EBV) latent-cycle antigens and the recognition of EBV-transformed lymphoblastoid cell lines,” Journal of Virology, vol. 79, no. 8, pp. 4896–4907, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. T. M. Holling, N. van der Stoep, E. Quinten, and P. J. van den Elsen, “Activated human T cells accomplish MHC class II expression through T cell-specific occupation of class II transactivator promoter III,” Journal of Immunology, vol. 168, no. 2, pp. 763–770, 2002. View at Scopus
  21. H. S. Ko, S. M. Fu, R. J. Winchester, D. T. Yu, and H. G. Kunkel, “Ia determinants on stimulated human T lymphocytes. Occurrence of mitogen- and antigen-activated T cells,” Journal of Experimental Medicine, vol. 150, no. 2, pp. 246–255, 1979. View at Scopus
  22. C. H. Chang, S. C. Hong, C. C. Hughes, C. A. Janeway Jr, and R. A. Flavell, “CIITA activates the expression of MHC class II genes in mouse T cells,” International Immunology, vol. 7, no. 9, pp. 1515–1518, 1995. View at Scopus
  23. J. B. Sacha, J. P. Giraldo-Vela, M. B. Buechler et al., “Gag- and Nef-specific CD4+ T cells recognize and inhibit SIV replication in infected macrophages early after infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 24, pp. 9791–9796, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Wahid, M. J. Cannon, and M. Chow, “Virus-specific CD4+ and CD8+ cytotoxic T-cell responses and long-term T-cell memory in individuals vaccinated against polio,” Journal of Virology, vol. 79, no. 10, pp. 5988–5995, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. N. R. Hegde, C. Dunn, D. M. Lewinsohn, M. A. Jarvis, J. A. Nelson, and D. C. Johnson, “Endogenous human cytomegalovirus gB is presented efficiently by MHC class II molecules to CD4+ CTL,” Journal of Experimental Medicine, vol. 202, no. 8, pp. 1109–1119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. E. M. M. van Leeuwen, E. B. M. Remmerswaal, M. H. M. Heemskerk, I. J. M. Ten Berge, and R. A. W. van Lier, “Strong selection of virus-specific cytotoxic CD4+ T-cell clones during primary human cytomegalovirus infection,” Blood, vol. 108, no. 9, pp. 3121–3127, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. D. M. Brown, A. M. Dilzer, D. L. Meents, and S. L. Swain, “CD4 T cell-mediated protection from lethal influenza: perform and antibody-mediated mechanisms give a one-two punch,” Journal of Immunology, vol. 177, no. 5, pp. 2888–2898, 2006. View at Scopus
  28. J. D. Brien, J. L. Uhrlaub, and J. Nikolich-Zǔgich, “West Nile virus-specific CD4 T cells exhibit direct antiviral cytokine secretion and cytotoxicity and are sufficient for antiviral protection,” Journal of Immunology, vol. 181, no. 12, pp. 8568–8575, 2008. View at Scopus
  29. N. S. Williams and V. H. Engelhard, “Perforin-dependent cytotoxic activity and lymphokine secretion by CD4+ T cells are regulated by CD8+ T cells,” Journal of Immunology, vol. 159, no. 5, pp. 2091–2099, 1997. View at Scopus
  30. I. Bourgault, A. Gomez, E. Gomrad, F. Picard, and J. P. Levy, “A virus-specific CD4+ cell-mediated cytolytic activity revealed by CD8+ cell elimination regularly develops in uncloned human antiviral cell lines,” Journal of Immunology, vol. 142, no. 1, pp. 252–256, 1989. View at Scopus
  31. S. Hou, M. Fishman, K. G. Murti, and P. C. Doherty, “Divergence between cytotoxic effector function and tumor necrosis factor α production for inflammatory CD4+ T cells from mice with Sendai virus pneumonia,” Journal of Virology, vol. 67, no. 10, pp. 6299–6302, 1993. View at Scopus
  32. D. Muller, B. H. Koller, J. L. Whitton, K. E. LaPan, K. K. Brigman, and J. A. Frelinger, “LCMV-specific, class II-restricted cytotoxic T cells in β 2-microglobulin-deficient mice,” Science, vol. 255, no. 5051, pp. 1576–1578, 1992. View at Scopus
  33. A. J. Zajac, D. G. Quinn, P. L. Cohen, and J. A. Frelinger, “Fas-dependent CD4+ cytotoxic T-cell-mediated pathogenesis during virus infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 25, pp. 14730–14735, 1996. View at Scopus
  34. S. A. Quezada, T. R. Simpson, K. S. Peggs et al., “Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts,” Journal of Experimental Medicine, vol. 207, no. 3, pp. 637–650, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Xie, A. Akpinarli, C. Maris et al., “Naive tumor-specific CD4+ T cells differentiated in vivo eradicate established melanoma,” Journal of Experimental Medicine, vol. 207, no. 3, pp. 651–667, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. X. Zhou and J. E. McElhaney, “Age-related changes in memory and effector T cells responding to influenza A/H3N2 and pandemic A/H1N1 strains in humans,” Vaccine, vol. 29, no. 11, pp. 2169–2177, 2011. View at Publisher · View at Google Scholar
  37. A. Alcami and U. H. Koszinowski, “Viral mechanisms of immune evasion,” Immunology Today, vol. 21, no. 9, pp. 447–455, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. J. L. Petersen, C. R. Morris, and J. C. Solheim, “Virus evasion of MHC class I molecule presentation,” Journal of Immunology, vol. 171, no. 9, pp. 4473–4478, 2003. View at Scopus
  39. J. Levitskaya, M. Coram, V. Levitsky et al., “Inhibition of antigen processing by the internal repeat region of the Epstein-barr virus nuclear antigen-1,” Nature, vol. 375, no. 6533, pp. 685–688, 1995. View at Scopus
  40. Y. Yin, B. Manoury, and R. Fåhraeus, “Self-inhibition of synthesis and antigen presentation by Epstein-barr virus-encoded EBNA1,” Science, vol. 301, no. 5638, pp. 1371–1374, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Paludan, D. Schmid, M. Landthaler et al., “Endogenous MHC class II processing of a viral nuclear antigen after autophagy,” Science, vol. 307, no. 5709, pp. 593–596, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Münz, K. L. Bickham, M. Subklewe et al., “Human CD4+ T lymphocytes consistently respond to the latent Epstein-barr virus nuclear antigen EBNA1,” Journal of Experimental Medicine, vol. 191, no. 10, pp. 1649–1660, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Paludan, K. Bickham, S. Nikiforow et al., “Epstein-barr nuclear antigen 1-specific CD4+ Th1 cells kill Burkitt's lymphoma cells,” Journal of Immunology, vol. 169, no. 3, pp. 1593–1603, 2002. View at Scopus
  44. E. Piriou, K. van Dort, N. M. Nanlohy, M. H. J. van Oers, F. Miedema, and D. van Baarle, “Loss of EBNA1-specific memory CD4+ and CD8+ T cells in HIV-infected patients progressing to AIDS-related non-Hodgkin lymphoma,” Blood, vol. 106, no. 9, pp. 3166–3174, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. O. Gasser, F. K. Bihl, M. Wolbers et al., “HIV patients developing primary CNS lymphoma lack EBV-specific CD4+ T cell function irrespective of absolute CD4+ T cell counts,” PLoS Medicine, vol. 4, no. 3, p. e96, 2007.
  46. K. N. Heller, F. Arrey, P. Steinherz et al., “Patients with Epstein-barr virus-positive lymphomas have decreased CD4+ T-cell responses to the viral nuclear antigen 1,” International Journal of Cancer, vol. 123, no. 12, pp. 2824–2831, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Chowdhury and J. Lieberman, “Death by a thousand cuts: granzyme pathways of programmed cell death,” Annual Review of Immunology, vol. 26, pp. 389–420, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. M. E. Pipkin and J. Lieberman, “Delivering the kiss of death: progress on understanding how perforin works,” Current Opinion in Immunology, vol. 19, no. 3, pp. 301–308, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. T. A. Haigh, X. Lin, H. Jia et al., “EBV latent membrane proteins (LMPs) 1 and 2 as immunotherapeutic targets: LMP-specific CD4+ cytotoxic T cell recognition of EBV-transformed B cell lines,” Journal of Immunology, vol. 180, no. 3, pp. 1643–1654, 2008. View at Scopus
  50. P. J. Norris, M. Sumaroka, C. Brander et al., “Multiple effector functions mediated by human immunodeficiency virus-specific CD4+ T-cell clones,” Journal of Virology, vol. 75, no. 20, pp. 9771–9779, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. S. J. Gagnon, F. A. Ennis, and A. L. Rothman, “Bystander target cell lysis and cytokine production by dengue virus- specific human CD4+ cytotoxic T-lymphocyte clones,” Journal of Virology, vol. 73, no. 5, pp. 3623–3629, 1999. View at Scopus
  52. C. Clayberger and A. M. Krensky, “Granulysin,” Current Opinion in Immunology, vol. 15, no. 5, pp. 560–565, 2003.
  53. C. F. Zheng, L. L. Ma, G. J. Jones et al., “Cytotoxic CD4+ T cells use granulysin to kill Cryptococcus neoformans, and activation of this pathway is defective in HIV patients,” Blood, vol. 109, no. 5, pp. 2049–2057, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. M. E. Peter and P. H. Krammer, “The CD95(APO-1/Fas) DISC and beyond,” Cell Death and Differentiation, vol. 10, no. 1, pp. 26–35, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Stalder, S. Hahn, and P. Erb, “Fas antigen is the major target molecule for CD4+ T cell-mediated cytotoxicity,” Journal of Immunology, vol. 152, no. 3, pp. 1127–1133, 1994. View at Scopus
  56. X. Liu, B. J. Taylor, G. Sun, and R. Bosselut, “Analyzing expression of perforin, Runx3, and Thpok genes during positive selection reveals activation of CD8-differentiation programs by MHC II-signaled thymocytes,” Journal of Immunology, vol. 175, no. 7, pp. 4465–4474, 2005. View at Scopus
  57. H. Niiya, I. Sakai, J. Lei et al., “Differential regulation of perforin expression in human CD4+ and CD8+ cytotoxic T lymphocytes,” Experimental Hematology, vol. 33, no. 7, pp. 811–818, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. M. E. Pipkin, A. Rao, and M. G. Lichtenheld, “The transcriptional control of the perforin locus,” Immunological Reviews, vol. 235, no. 1, pp. 55–72, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. W. J. Grossman, J. W. Verbsky, B. L. Tollefsen, C. Kemper, J. P. Atkinson, and T. J. Ley, “Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells,” Blood, vol. 104, no. 9, pp. 2840–2848, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. M. R. Betts and R. A. Koup, “Detection of T-cell degranulation: CD107a and b,” Methods in Cell Biology, vol. 2004, no. 75, pp. 497–512, 2004. View at Scopus
  61. E. Nemes, L. Bertoncelli, E. Lugli et al., “Cytotoxic granule release dominates gag-specific CD4+ T-cell response in different phases of HIV infection,” AIDS, vol. 24, no. 7, pp. 947–957, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. J. P. Casazza, M. R. Betts, D. A. Price et al., “Acquisition of direct antiviral effector functions by CMV-specific CD4+ T lymphocytes with cellular maturation,” Journal of Experimental Medicine, vol. 203, no. 13, pp. 2865–2877, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. K. A. Stuller, S. S. Cush, and E. Flano, “Persistent γ-herpesvirus infection induces a CD4 T cell response containing functionally distinct effector populations,” Journal of Immunology, vol. 184, no. 7, pp. 3850–3856, 2010.
  64. S. Bauer, V. Groh, J. Wu et al., “Activation of NK cells and T cells by NKG2D, a receptor for stress- inducible MICA,” Science, vol. 285, no. 5428, pp. 727–729, 1999. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Diefenbach, A. M. Jamieson, S. D. Liu, N. Shastri, and D. H. Raulet, “Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages,” Nature Immunology, vol. 1, no. 2, pp. 119–126, 2000. View at Scopus
  66. D. Cosman, J. Müllberg, C. L. Sutherland et al., “ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor,” Immunity, vol. 14, no. 2, pp. 123–133, 2001. View at Scopus
  67. E. Amyes, C. Hatton, D. Montamat-Sicotte et al., “Characterization of the CD4+ T cell response to Epstein-barr virus during primary and persistent infection,” Journal of Experimental Medicine, vol. 198, no. 6, pp. 903–911, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. D. M. Brown, “Cytolytic CD4 cells: direct mediators in infectious disease and malignancy,” Cellular Immunology, vol. 262, no. 2, pp. 89–95, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. V. Appay, P. R. Dunbar, M. Callan et al., “Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections,” Nature Medicine, vol. 8, no. 4, pp. 379–385, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. T. Kaneko, “Human autoreactive (Th0) CD4+ T-cell clones with cytolytic activity recognizing autologous activated T cells as the target,” Human Immunology, vol. 61, no. 8, pp. 780–788, 2000. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Yasukawa, H. Ohminami, J. Arai, Y. Kasahara, Y. Ishida, and S. Fujita, “Granule exocytosis, and not the Fas/Fas ligand system, is the main pathway of cytotoxicity mediated by alloantigen-specific CD4+ as well as CD8+ cytotoxic T lymphocytes in humans,” Blood, vol. 95, no. 7, pp. 2352–2355, 2000. View at Scopus
  72. D. M. Brown, C. Kamperschroer, A. M. Dilzer, D. M. Roberts, and S. L. Swain, “IL-2 and antigen dose differentially regulate perforin- and FasL-mediated cytolytic activity in antigen specific CD4+ T cells,” Cellular Immunology, vol. 257, no. 1-2, pp. 69–79, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. M. D. McKisic, D. W. Lancki, and F. W. Fitch, “Cytolytic activity of murine CD4+ T cell clones correlates with IFN-γ production in mouse strains having a BALB/c background,” Journal of Immunology, vol. 150, no. 9, pp. 3793–3805, 1993. View at Scopus
  74. D. W. Lancki, C. S. Hsieh, and F. W. Fitch, “Mechanisms of lysis by cytotoxic T lymphocyte clones: lytic activity and gene expression in cloned antigen-specific CD4+ and CD8+ T lymphocytes,” Journal of Immunology, vol. 146, no. 9, pp. 3242–3249, 1991. View at Scopus
  75. D. A. Vignali, L. W. Collison, and C. J. Workman, “How regulatory T cells work,” Nature Reviews Immunology, vol. 8, no. 7, pp. 523–532, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. B. P. Mahon, K. Katrak, A. Nomoto, A. J. Macadam, P. D. Minor, and K. H. Mills, “Poliovirus-specific CD4+ Th1 clones with both cytotoxic and helper activity mediate protective humoral immunity against a lethal poliovirus infection in transgenic mice expressing the human poliovirus receptor,” Journal of Experimental Medicine, vol. 181, no. 4, pp. 1285–1292, 1995. View at Publisher · View at Google Scholar · View at Scopus
  77. P. Erb, D. Grogg, M. Troxler, M. Kennedy, and M. Fluri, “CD4+ T cell-mediated killing of MHC class II-positive antigen-presenting cells. I. Characterization of target cell recognition by in vivo or in vitro activated CD4+ killer T cells,” Journal of Immunology, vol. 144, no. 3, pp. 790–795, 1990. View at Scopus
  78. K. Yamamoto, F. Shibata, N. Miyasaka, and O. Miura, “The human perforin gene is a direct target of STAT4 activated by IL-12 in NK cells,” Biochemical and Biophysical Research Communications, vol. 297, no. 5, pp. 1245–1252, 2002. View at Publisher · View at Google Scholar · View at Scopus
  79. T. W. Salcedo, L. Azzoni, S. F. Wolf, and B. Perussia, “Modulation of perforin and granzyme messenger RNA expression in human natural killer cells,” Journal of Immunology, vol. 151, no. 5, pp. 2511–2520, 1993. View at Scopus
  80. D. F. Deblaker-Hohe, A. Yamauchi, C. R. Yu, J. A. Horvath-Arcidiacono, and E. T. Bloom, “IL-12 synergizes with IL-2 to induce lymphokine-activated cytotoxicity and perforin and granzyme gene expression in fresh human NK cells,” Cellular Immunology, vol. 165, no. 1, pp. 33–43, 1995. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Aste-Amezaga, A. D'Andrea, M. Kubin, and G. Trinchieri, “Cooperation of natural killer cell stimulatory factor/interleukin-12 with other stimuli in the induction of cytokines and cytotoxic cell-associated molecules in human T and NK cells,” Cellular Immunology, vol. 156, no. 2, pp. 480–492, 1994. View at Publisher · View at Google Scholar · View at Scopus
  82. M. E. Pipkin, B. Ljutic, F. Cruz-Guilloty et al., “Chromosome transfer activates and delineates a locus control region for perforin,” Immunity, vol. 26, no. 1, pp. 29–41, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. M. L. Janas, P. Groves, N. Kienzle, and A. Kelso, “IL-2 regulates perforin and granzyme gene expression in CD8+ T cells independently of its effects on survival and proliferation,” Journal of Immunology, vol. 175, no. 12, pp. 8003–8010, 2005. View at Scopus
  84. M. J. Smyth, J. R. Ortaldo, Y. I. Shinkai et al., “Interleukin 2 induction of pore-forming protein gene expression in human peripheral blood CD8+ T cells,” Journal of Experimental Medicine, vol. 171, no. 4, pp. 1269–1281, 1990. View at Scopus
  85. J. Zhang, I. Scordi, M. J. Smyth, and M. G. Lichtenheld, “Interleukin 2 receptor signaling regulates the perforin gene through signal transducer and activator of transcription (Stat)5 activation of two enhancers,” Journal of Experimental Medicine, vol. 190, no. 9, pp. 1297–1307, 1999. View at Publisher · View at Google Scholar · View at Scopus
  86. M. E. Pipkin, J. A. Sacks, F. Cruz-Guilloty, M. G. Lichtenheld, M. J. Bevan, and A. Rao, “Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells,” Immunity, vol. 32, no. 1, pp. 79–90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. F. Cruz-Guilloty, M. E. Pipkin, I. M. Djuretic et al., “Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs,” Journal of Experimental Medicine, vol. 206, no. 1, pp. 51–59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. E. L. Pearce, A. C. Mullen, G. A. Martins et al., “Control of effector CD8+ T cell function by the transcription factor eomesodermin,” Science, vol. 302, no. 5647, pp. 1041–1043, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. H. Z. Qui, A. T. Hagymasi, S. Bandyopadhyay et al., “CD134 plus CD137 dual costimulation induces eomesodermin in CD4 T cells To program cytotoxic Th1 differentiation,” Journal of Immunology, vol. 187, no. 7, pp. 3555–3564, 2011.
  90. R. Alonso-Arias, M. A. Moro-Garcia, J. R. Vidal-Castineira et al., “IL-15 preferentially enhances functional properties and antigen-specific responses of CD4+CD28null compared to CD4+CD28+ T cells,” Aging Cell, vol. 10, no. 5, pp. 844–852, 2011. View at Publisher · View at Google Scholar
  91. C. Figueiredo, M. Wittmann, D. Wang et al., “Heat shock protein 70(HSP70) induces cytotoxicity of T-helper cells,” Blood, vol. 113, no. 13, pp. 3008–3016, 2009. View at Publisher · View at Google Scholar · View at Scopus