About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 970726, 10 pages
http://dx.doi.org/10.1155/2011/970726
Research Article

Diffusion Tensor MRI to Assess Damage in Healthy and Dystrophic Skeletal Muscle after Lengthening Contractions

1Department of Diagnostic Radiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
2Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA

Received 13 May 2011; Revised 2 July 2011; Accepted 4 August 2011

Academic Editor: Robert J. Bloch

Copyright © 2011 Alan B. McMillan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Duchenne, De l'électrisation localisée et de son application a la pathologie et a la thérapeutique, Bailliere et Fils, Paris, France, 1861.
  2. W. E. Garrett Jr., “Muscle strain injuries,” American Journal of Sports Medicine, vol. 24, pp. S2–S8, 1996. View at Scopus
  3. K. D. Hunter and J. A. Faulkner, “Pliometric contraction-induced injury of mouse skeletal muscle: effect of initial length,” Journal of Applied Physiology, vol. 82, no. 1, pp. 278–283, 1997. View at Scopus
  4. C. Dellorusso, R. W. Crawford, J. S. Chamberlain, and S. V. Brooks, “Tibialis anterior muscles in mdx mice are highly susceptible to contraction-induced injury,” Journal of Muscle Research and Cell Motility, vol. 22, no. 5, pp. 467–475, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. B. J. Petrof, J. B. Shrager, H. H. Stedman, A. M. Kelly, and H. L. Sweeney, “Dystrophin protects the sarcolemma from stresses developed during muscle contraction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 8, pp. 3710–3714, 1993. View at Scopus
  6. K. P. Speer, J. Lohnes, W. E. Garrett Jr., and E. Eriksson, “Radiographic imaging of muscle strain injury,” American Journal of Sports Medicine, vol. 21, no. 1, pp. 89–96, 1993. View at Scopus
  7. D. G. Blankenbaker and A. A. De Smet, “MR imaging of muscle injuries,” Applied Radiology, vol. 33, no. 4, pp. 14–26, 2004. View at Scopus
  8. A. M. Heemskerk, M. R. Drost, G. S. Van Bochove, M. F. M. Van Oosterhout, K. Nicolay, and G. J. Strijkers, “DTI-based assessment of ischemia-reperfusion in mouse skeletal muscle,” Magnetic Resonance in Medicine, vol. 56, no. 2, pp. 272–281, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. C. H. Sotak, “The role of diffusion tensor imaging in the evaluation of ischemic brain—a review,” NMR in Biomedicine, vol. 15, no. 7-8, pp. 561–569, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. B. M. Damon, Z. Ding, A. W. Anderson, A. S. Freyer, and J. C. Gore, “Validation of diffusion tensor MRI-based muscle fiber tracking,” Magnetic Resonance in Medicine, vol. 48, no. 1, pp. 97–104, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. A. M. Heemskerk, T. K. Sinha, K. J. Wilson, Z. Ding, and B. M. Damon, “Quantitative assessment of DTI-based muscle fiber tracking and optimal tracking parameters,” Magnetic Resonance in Medicine, vol. 61, no. 2, pp. 467–472, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. M. Heemskerk, G. J. Strijkers, M. R. Drost, G. S. Van Bochove, and K. Nicolay, “Skeletal muscle degeneration and regeneration after femoral artery ligation in mice: monitoring with diffusion MR imaging,” Radiology, vol. 243, no. 2, pp. 413–421, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. R. M. Lovering, A. O'Neill, J. M. Muriel, B. L. Prosser, J. Strong, and R. J. Bloch, “Physiology, structure, and susceptibility to injury of skeletal muscle in mice lacking keratin 19-based and desmin-based intermediate filaments,” American Journal of Physiology, vol. 300, no. 4, pp. C803–C813, 2011. View at Publisher · View at Google Scholar
  14. R. M. Lovering, A. B. Mcmillan, and R. P. Gullapalli, “Location of myofiber damage in skeletal muscle after lengthening contractions,” Muscle and Nerve, vol. 40, no. 4, pp. 589–594, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. R. M. Lovering, J. A. Roche, R. J. Bloch, and P. G. De Deyne, “Recovery of function in skeletal muscle following 2 different contraction-induced injuries,” Archives of Physical Medicine and Rehabilitation, vol. 88, no. 5, pp. 617–625, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. R. M. Lovering and P. G. De Deyne, “Contractile function, muscle eccentric contraction-induced injury,” American Journal of Physiology, vol. 286, no. 2, pp. C230–C238, 2004. View at Scopus
  17. I. A. Barash, L. Mathew, A. F. Ryan, J. Chen, and R. L. Lieber, “Rapid muscle-specific gene expression changes after a single bout of eccentric contractions in the mouse,” American Journal of Physiology, vol. 286, no. 2, pp. C355–C364, 2004. View at Scopus
  18. C. P. Ingalls, G. L. Warren, J. Z. Zhang, S. L. Hamilton, and R. B. Armstrong, “Dihydropyridine and ryanodine receptor binding after eccentric contractions in mouse skeletal muscle,” Journal of Applied Physiology, vol. 96, no. 5, pp. 1619–1625, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Hakim, W. Hage, R. M. Lovering, C. T. Moorman, L. A. Curl, and P. G. De Deyne, “Dexamethasone and recovery of contractile tension after a muscle injury,” Clinical Orthopaedics and Related Research, no. 439, pp. 235–242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. R. M. Lovering, M. Hakim, C. T. Moorman, and P. G. De Deyne, “The contribution of contractile pre-activation to loss of function after a single lengthening contraction,” Journal of Biomechanics, vol. 38, no. 7, pp. 1501–1507, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. R. M. Lovering, J. A. Roche, M. H. Goodall, B. B. Clark, and A. Mcmillan, “An in vivo rodent model of contraction-induced injury and non-invasive monitoring of recovery,” Journal of Visualized Experiments, no. 51, 2011. View at Publisher · View at Google Scholar
  22. S. Mori, B. J. Crain, V. P. Chacko, and P. C. M. Van Zijl, “Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging,” Annals of Neurology, vol. 45, no. 2, pp. 265–269, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. P. W. Hamer, J. M. McGeachie, M. J. Davies, and M. D. Grounds, “Evans Blue Dye as an in vivo marker of myofibre damage: optimising parameters for detecting initial myofibre membrane permeability,” Journal of Anatomy, vol. 200, no. 1, pp. 69–79, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. M. R. Stone, A. O'Neill, R. M. Lovering et al., “Absence of keratin 19 in mice causes skeletal myopathy with mitochondrial and sarcolemmal reorganization,” Journal of Cell Science, vol. 120, no. 22, pp. 3999–4008, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. H. K. Kim, T. Laor, P. S. Horn, J. M. Racadio, B. Wong, and B. J. Dardzinski, “T2 mapping in Duchenne muscular dystrophy: distribution of disease activity and correlation with clinical assessments,” Radiology, vol. 255, no. 3, pp. 899–908, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. K. T. Mattila, R. Lukka, T. Hurme, M. Komu, A. Alanen, and H. Kalimo, “Magnetic resonance imaging and magnetization transfer in experimental myonecrosis in the rat,” Magnetic Resonance in Medicine, vol. 33, no. 2, pp. 185–192, 1995. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Sébrié, B. Gillet, J. P. Lefaucheur, A. Sébille, and J. C. Beloeil, “Mouse muscle regeneration: an in vivo 2D 1H magnetic resonance spectroscopy (MRS) study,” FEBS Letters, vol. 423, no. 1, pp. 71–74, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Marqueste, B. Giannesini, Y. Le Fur, P. J. Cozzone, and D. Bendahan, “Comparative MRI analysis of T2 changes associated with single and repeated bouts of downhill running leading to eccentric-induced muscle damage,” Journal of Applied Physiology, vol. 105, no. 1, pp. 299–307, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Zhang, G. Zhang, B. Morrison, S. Mori, and K. A. Sheikh, “Magnetic resonance imaging of mouse skeletal muscle to measure denervation atrophy,” Experimental Neurology, vol. 212, no. 2, pp. 448–457, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Wishnia, H. Alameddine, S. Tardif de Géry, and A. Leroy-Willig, “Use of magnetic resonance imaging for noninvasive characterization and follow-up of an experimental injury to normal mouse muscles,” Neuromuscular Disorders, vol. 11, no. 1, pp. 50–55, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. T. N. Frimel, G. A. Walter, J. D. Gibbs, G. S. Gaidosh, and K. Vandenborne, “Noninvasive monitoring of muscle damage during reloading following limb disuse,” Muscle and Nerve, vol. 32, no. 5, pp. 605–612, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Mathur, R. S. Vohra, S. A. Germain et al., “Changes in muscle T2 and tissue damage after downhill running in mdx mice,” Muscle and Nerve, vol. 43, no. 6, pp. 878–886, 2011. View at Publisher · View at Google Scholar
  33. J. L. Fleckenstein, P. T. Weatherall, R. W. Parkey, J. Payne, and R. M. Peschock, “Sports-related muscle injuries: evaluation with MR imaging,” Radiology, vol. 172, no. 3, pp. 793–798, 1989. View at Scopus
  34. F. G. Shellock, T. Fukunaga, J. H. Mink, and V. R. Edgerton, “Exertional muscle injury: evaluation of concentric versus eccentric actions with serial MR imaging,” Radiology, vol. 179, no. 3, pp. 659–664, 1991. View at Scopus
  35. L. M. McIntosh, R. E. Baker, and J. E. Anderson, “Magnetic resonance imaging of regenerating and dystrophic mouse muscle,” Biochemistry and Cell Biology, vol. 76, no. 2-3, pp. 532–541, 1998. View at Scopus
  36. G. Walter, L. Cordier, D. Bloy, and H. L. Sweeney, “Noninvasive monitoring of gene correction in dystrophic muscle,” Magnetic Resonance in Medicine, vol. 54, no. 6, pp. 1369–1376, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. C. C. Van Donkelaar, L. J. G. Kretzers, P. H. M. Bovendeerd et al., “Diffusion tensor imaging in biomechanical studies of skeletal muscle function,” Journal of Anatomy, vol. 194, no. 1, pp. 79–88, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. J. H. Kan, A. M. Heemskerk, Z. Ding et al., “DTI-based muscle fiber tracking of the quadriceps mechanism in lateral patellar dislocation,” Journal of Magnetic Resonance Imaging, vol. 29, no. 3, pp. 663–670, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. D. A. Lansdown, Z. Ding, M. Wadington, J. L. Hornberger, and B. M. Damon, “Quantitative diffusion tensor MRI-based fiber tracking of human skeletal muscle,” Journal of Applied Physiology, vol. 103, no. 2, pp. 673–681, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. A. M. Heemskerk, G. J. Strijkers, A. Vilanova, M. R. Drost, and K. Nicolay, “Determination of mouse skeletal muscle architecture using three-dimensional diffusion tensor imaging,” Magnetic Resonance in Medicine, vol. 53, no. 6, pp. 1333–1340, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. B. M. Damon, “Effects of image noise in muscle diffusion tensor (DT)-MRI assessed using numerical simulations,” Magnetic Resonance in Medicine, vol. 60, no. 4, pp. 934–944, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. U. Sinha, S. Sinha, J. A. Hodgson, and R. V. Edgerton, “Human soleus muscle architecture at different ankle joint angles from magnetic resonance diffusion tensor imaging,” Journal of Applied Physiology, vol. 110, no. 3, pp. 807–819, 2011. View at Publisher · View at Google Scholar
  43. G. L. Warren, C. P. Ingalls, D. A. Lowe, and R. B. Armstrong, “What mechanisms contribute to the strength loss that occurs during and in the recovery from skeletal muscle injury?” Journal of Orthopaedic and Sports Physical Therapy, vol. 32, no. 2, pp. 58–64, 2002. View at Scopus
  44. D. L. Morgan and D. G. Allen, “Early events in stretch-induced muscle damage,” Journal of Applied Physiology, vol. 87, no. 6, pp. 2007–2015, 1999. View at Scopus
  45. R. A. Meyer and B. M. Prior, “Functional magnetic resonance imaging of muscle,” Exercise and Sport Sciences Reviews, vol. 28, no. 2, pp. 89–92, 2000. View at Scopus