About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 105891, 7 pages
http://dx.doi.org/10.1155/2012/105891
Research Article

Mouse Ficolin B Has an Ability to Form Complexes with Mannose-Binding Lectin-Associated Serine Proteases and Activate Complement through the Lectin Pathway

1Department of Immunology, Fukushima Medical University School of Medicine, 1-Hikarigaoka, Fukushima 960-1295, Japan
2Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan

Received 3 October 2011; Accepted 8 November 2011

Academic Editor: Nobutaka Wakamiya

Copyright © 2012 Yuichi Endo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Ficolins are thought to be pathogen-associated-molecular-pattern-(PAMP-) recognition molecules that function to support innate immunity. Like mannose-binding lectins (MBLs), most mammalian ficolins form complexes with MBL-associated serine proteases (MASPs), leading to complement activation via the lectin pathway. However, the ability of murine ficolin B, a homologue of human M-ficolin, to perform this function is still controversial. The results of the present study show that ficolin B in mouse bone marrow is an oligomeric protein. Ficolin B, pulled down using GlcNAc-agarose, contained very low, but detectable, amounts of MASP-2 and small MBL-associated protein (sMAP) and showed detectable C4-deposition activity on immobilized N-acetylglucosamine. These biochemical features of ficolin B were confirmed using recombinant mouse ficolin B produced in CHO cells. Taken together, these results suggest that like other mammalian homologues, murine ficolin B has an ability to exert its function via the lectin pathway.