About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 105891, 7 pages
http://dx.doi.org/10.1155/2012/105891
Research Article

Mouse Ficolin B Has an Ability to Form Complexes with Mannose-Binding Lectin-Associated Serine Proteases and Activate Complement through the Lectin Pathway

1Department of Immunology, Fukushima Medical University School of Medicine, 1-Hikarigaoka, Fukushima 960-1295, Japan
2Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan

Received 3 October 2011; Accepted 8 November 2011

Academic Editor: Nobutaka Wakamiya

Copyright © 2012 Yuichi Endo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Matsushita, Y. Endo, S. Taira et al., “A novel human serum lectin with collagen- and fibrinogen-like domains that functions as an opsonin,” Journal of Biological Chemistry, vol. 271, no. 5, pp. 2448–2454, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Garlatti, N. Belloy, L. Martin et al., “Structural insights into the innate immune recognition specificities of L- and H-ficolins,” EMBO Journal, vol. 26, no. 2, pp. 623–633, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. V. Garlatti, L. Martin, E. Gout et al., “Structural basis for innate immune sensing by M-ficolin and its control by a pH-dependent conformational switch,” Journal of Biological Chemistry, vol. 282, no. 49, pp. 35814–35820, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. M. Tanio, S. Kondo, S. Sugio, and T. Kohno, “Trivalent recognition unit of innate immunity system: crystal structure of trimeric human M-ficolin fibrinogen-like domain,” Journal of Biological Chemistry, vol. 282, no. 6, pp. 3889–3895, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. M. Matsushita, Y. Endo, and T. Fujita, “Complement-activating complex of ficolin and mannose-binding lectin-associated serine protease,” Journal of Immunology, vol. 164, no. 5, pp. 2281–2284, 2000. View at Scopus
  6. Y. Endo, Y. Sato, M. Matsushita, and T. Fujita, “Cloning and characterization of the human lectin P35 gene and its related gene,” Genomics, vol. 36, no. 3, pp. 515–521, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. J. Lu, P. N. Tay, O. L. Kon, and K. B. M. Reid, “Human ficolin: cDNA cloning, demonstration of peripheral blood leucocytes as the major site of synthesis and assignment of the gene to chromosome 9,” Biochemical Journal, vol. 313, no. 2, pp. 473–478, 1996. View at Scopus
  8. R. Sugimoto, Y. Yae, M. Akaiwa et al., “Cloning and characterization of the Hakata antigen, a member of the ficolin/opsonin p35 lectin family,” Journal of Biological Chemistry, vol. 273, no. 33, pp. 20721–20727, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Honoré, S. Rørvig, L. Munthe-Fog et al., “The innate pattern recognition molecule Ficolin-1 is secreted by monocytes/macrophages and is circulating in human plasma,” Molecular Immunology, vol. 45, no. 10, pp. 2782–2789, 2008. View at Publisher · View at Google Scholar · View at PubMed
  10. Y. Fujimori, S. Harumiya, Y. Fukumoto et al., “Molecular cloning and characterization of mouse ficolin-A,” Biochemical and Biophysical Research Communications, vol. 244, no. 3, pp. 796–800, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. T. Ohashi and H. P. Erickson, “Oligomeric structure and tissue distribution of ficolins from mouse, pig and human,” Archives of Biochemistry and Biophysics, vol. 360, no. 2, pp. 223–232, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. Y. Liu, Y. Endo, S. Homma, K. Kanno, H. Yaginuma, and T. Fujita, “Ficolin A and ficolin B are expressed in distinct ontogenic patterns and cell types in the mouse,” Molecular Immunology, vol. 42, no. 11, pp. 1265–1273, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. V. L. Runza, T. Hehlgans, B. Echtenacher, U. Zähringer, W. J. Schwaeble, and D. N. Männel, “Localization of the mouse defense lectin ficolin B in lysosomes of activated macrophages,” Journal of Endotoxin Research, vol. 12, no. 2, pp. 120–126, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Endo, Y. Liu, K. Kanno, M. Takahashi, M. Matsushita, and T. Fujita, “Identification of the mouse H-ficolin gene as a pseudogene and orthology between mouse ficolins A/B and human L-/M-ficolins,” Genomics, vol. 84, no. 4, pp. 737–744, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. Y. Endo, M. Matsushita, and T. Fujita, “Role of ficolin in innate immunity and its molecular basis,” Immunobiology, vol. 212, no. 4-5, pp. 371–379, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. M. Matsushita, M. Kuraya, N. Hamasaki, M. Tsujimura, H. Shiraki, and T. Fujita, “Activation of the lectin complement pathway by H-ficolin (Hakata antigen),” Journal of Immunology, vol. 168, no. 7, pp. 3502–3506, 2002. View at Scopus
  17. Y. Liu, Y. Endo, D. Iwaki et al., “Human M-ficolin is a secretory protein that activates the lectin complement pathway,” Journal of Immunology, vol. 175, no. 5, pp. 3150–3156, 2005. View at Scopus
  18. Y. Endo, N. Nakazawa, Y. Liu et al., “Carbohydrate-binding specificities of mouse ficolin A, a splicing variant of ficolin A and ficolin B and their complex formation with MASP-2 and sMAP,” Immunogenetics, vol. 57, no. 11, pp. 837–844, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. U. V. Girija, D. A. Mitchell, S. Roscher, and R. Wallis, “Carbohydrate recognition and complement activation by rat ficolin-B,” European Journal of Immunology, vol. 41, no. 1, pp. 214–223, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. H. Nakanishi, Y. Higuchi, S. Kawakami, F. Yamashita, and M. Hashida, “PiggyBac transposon-mediated long-term gene expression in mice,” Molecular Therapy, vol. 18, no. 4, pp. 707–714, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. D. Iwaki, K. Kanno, M. Takahashi et al., “Small mannose-binding lectin-associated protein plays a regulatory role in the lectin complement pathway,” Journal of Immunology, vol. 177, no. 12, pp. 8626–8632, 2006. View at Scopus
  22. M. Takahashi, Y. Ishida, D. Iwaki et al., “Essential role of mannose-binding lectin-associated serine protease-1 in activation of the complement factor D,” Journal of Experimental Medicine, vol. 207, no. 1, pp. 29–37, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. D. Iwaki, K. Kanno, M. Takahashi, Y. Endo, M. Matsushita, and T. Fujita, “Mannose-binding lectin-associated serine protein 3 (MASP-3) induces activation of the alternative complement pathway,” The Journal of Immunology, vol. 187, pp. 3751–3758, 2011.
  24. N. Okada, R. Harada, T. Fujita, and H. Okada, “A novel membrane glycoprotein capable of inhibiting membrane attack by homologous complement,” International Immunology, vol. 1, no. 2, pp. 205–208, 1989. View at Scopus
  25. S. E. Degn, A. G. Hansen, R. Steffensen, C. Jacobsen, J. C. Jensenius, and S. Thiel, “MAp44, a human protein associated with pattern recognition molecules of the complement system and regulating the lectin pathway of complement activation,” Journal of Immunology, vol. 183, no. 11, pp. 7371–7378, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus