About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 121867, 6 pages
http://dx.doi.org/10.1155/2012/121867
Research Article

A Novel Model of Atherosclerosis in Rabbits Using Injury to Arterial Walls Induced by Ferric Chloride as Evaluated by Optical Coherence Tomography as well as Intravascular Ultrasound and Histology

1Department of Cardiology, Key Laboratories of Education, Ministry for Myocardial Ischemia Mechanism and Treatment, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
2Department of Pathology, Harbin Medical University, Harbin 150086, China

Received 16 January 2012; Revised 6 March 2012; Accepted 10 March 2012

Academic Editor: Michael Kalafatis

Copyright Β© 2012 Jinwei Tian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This study aim was to develop a new model of atherosclerosis by FeCl3-induced injury to right common carotid arteries (CCAs) of rabbits. Right CCAs were induced in male New Zealand White rabbits ( 𝑛 = 1 5 ) by combination of a cholesterol-rich diet and FeCl3-induced injury to arterial walls. The right and left CCAs were evaluated by histology and in vivo intravascular ultrasound (IVUS) and optical coherence tomography (OCT) examinations of 24 hours ( 𝑛 = 3 ), 8 weeks ( 𝑛 = 6 ), and 12 weeks ( 𝑛 = 6 ) after injury. Each right CCA of the rabbits showed extensive white-yellow plaques. At eight and 12 weeks after injury, IVUS, OCT, and histological findings demonstrated that the right CCAs had evident eccentric plaques. Six plaques (50%) with evident positive remodeling were observed. Marked progression was clearly observed in the same plaque at 12 weeks after injury when it underwent repeat OCT and IVUS. We demonstrated, for the first time, a novel model of atherosclerosis induced by FeCl3. The model is simple, fast, inexpensive, and reproducible and has a high success rate. The eccentric plaques and remodeling of plaques were common in this model. We successfully carried out IVUS and OCT examinations twice in the same lesion within a relatively long period of time.